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| Background

NFT (Non-Fungible Token)
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| Motivation

Automatic Detection! Manual Inspection
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® Automatic Detection can only find a subset of wash trading due to their sophisticated patterns.

® Manual Inspection is usually required, but it is hard to get useful information directly from the
original transactions.

[1] von Wachter V, Jensen J R, Regner F, et al. NFT Wash Trading: Quantifying suspicious behaviour in NFT markets[J]. arXiv preprint
arXiv:2202.03866, 2022.



| NFTDisk

NFT Disk
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NFTDisk: a novel visualization for investors to visually identify wash trading activities in NFT markets.
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| NFTDisk
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| Evaluation

® Two case studies

® User interview with 14 real NFT investors
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I Case Study
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I User Interview

Online study with 14 NFT investors (4 females, 10 males, age, ¢, = 28)

Task:

T1. Initialize the visualization by using interactions components to filter out undesired information.

T2. Observe the Disk Module to find suspicious addresses and time periods and brush to select them.
T3. Analyze the NFT flows at the group level by the stacked area chart of the Flow Module.

T4. Brush a period in the stacked area chart and check the detailed NFT flows in the flow-based chart.

Tutorial Task Phase Questionnaire Interview

»

>

60 minutes
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I User Interview

[ Workflow Effectiveness ]
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| Summary

® Cooperated with NFT investors to collect design requirements;
® Proposed NFTDisk to help investors detect and analyze wash trading;

® Conducted case studies and user interview to evaluate NFTDisk;
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Motivation

@ Due to the decentralization and ano-
nymity of Ethereum, Ponzi schemes
have been easily deployed and caused
significant losses 1o investors.

@ However, there are still no explainable
and effective methods to help investors
easily identify Ponzi schemes and val-
date whether a smart contract is actually
a Ponzi scheme.

@ We propose PonzilLens. a novel visu-
slization approach to help investors
achieve early ldennﬁcanm of Pon.n
Sch by I g the
codes of smart contracts.

Features of Ponzi Schemes

omvesmg fiow and rewarding flow
share one common execution path
operating on the same storage slot.

eA loop during rewarding for cases
where ether is retumed to more than
one past investor.
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PonziLens: A visualization tool to achieve early detection of Ponzi Schemes on Ethereum
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| Design Requirements

® R1 Analyze wash trading in the scope of NFT collection;

® R2 Recognize suspicious transactions and addresses from the overview;
® R3 Reveal wash trading features at multiple levels;

® R4 Display the detailed transaction patterns of wash trading;

® R5 Enable the evaluation of wash trading influence.
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| Participants

ID Gender Age NFT Experience Description

U1 Male 23 13 months A creator of an NFT community and a key opinion leader on Twitter.
U2 Female 25 8 months A product manager for multiple NFT projects.

U3 Male 30 12 months An NFT investor who is good at using NFT analysis tools.

U4 Female 26 12 months A creator of an NFT community and a key opinion leader on Twitter.
U5 Male 29 10 months A creator of an NFT community and a leader of an NFT project.

U6  Male 25 12 months A creator of an NFT community and a leader of three NFT projects.
U7 Female 23 7 months An NFT investor engaged in the issuance of NFT projects.

U8 Male 27 10 months An NFT investor engaged in the issuance of NFT projects.

U9 Male 27 6 months An NFT investor who is good at using NFT analysis tools.
U10  Male 30 12 months An NFT investor investing in cryptocurrencies for five years.
U1l Male 25 7 months An NFT investor investing in cryptocurrencies for two years.
U12  Male 28 5 months An NFT investor investing in cryptocurrencies for two years.
U13  Male 46 4 months A professor whose research focus is digital economy.
U14 Female 28 5 months A PhD student with two-year research experience in cryptocurrencies.
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I Implications

® Lessons learned:
® Group of addresses > Individual addresses.
® Different addresses have different tasks.
® Not all wash trading are “harmful”.
® Design considerations for novices users:
® Straightforward visual design (market risk -> height of flows);

® Overview first, Details on demand;
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| Generalization

® Workflow => Other frauds in cryptocurrency markets:
® e.g. money laundering

® NFTDisk => Traditional financial market:
® e.g. stocks and bonds

® NFTDisk => Other abnormal online activities involving different

participants:

® e.g. Political Astroturfing
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| Case 2

Wash Trading Enhanced by Trading Rewards but Discouraged by Royalties

Average Price:  (0.94) - T (167.13) Average Price:  (5.44) - T (38.88) Average Price:  (0.58) N (269.38)

Token ID: 4171
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| Address Reordering
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Amount of transactions => distance matrix of addresses

Hierarchy clustering => clustering tree => optimal leaf ordering algorithm

39



l Suspicious Score

where M is the number of transactions between the two addresses, and N is the
number of unique NFTs involved in these transactions. The higher the suspicious
score, the more likely the address pair is to collude. If each transaction from a pair

of addresses includes a different NFT, then their suspicious score is zero.
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