
Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

VISILIENCE: An Interactive Visualization
Framework for Resilience Analysis Using

Control-Flow Graph

Hailong Jiang 1 Shaolun Ruan 2 Yong Wang 2 Bo Fang 3

Qiang Guan 1

1Kent State University 2Singapore Management University 3Pacific Northwest National
Laboratory

October 22, 2023Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 1 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Outline
1 Background

Soft Errors in High-Performance Computing (HPC) system
Resilience Analysis to Soft Errors

2 Motivation

3 VISILIENCE
VISILIENCE Overview
Benefits of using CFG representation
Data Generation
Visual Encoding

4 Visualization Engine Design
Design Challenges
Visualization Engine System Workflow
Interface

5 Case Study
Discussion

6 Summary

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 2 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Background: Soft Errors in High-Performance
Computing (HPC) system

Se
ve

rit
y

Time

Fault
Occures

Benign Error

Inactive Error

Crash

Incorrect Output: Detected Error (DE)

Incorrect Output: Silent Data Corruption (SDC)

Finish Line

 Error Activated

Figure: Types of failures [1]

Fault: Root cause of an error,
usually physical defects or
software bugs
Benign: The program output
matches that of the error-free
execution even though a fault
occurred during its execution
Silent Data Corruption
(SDC): The program output
does not match, it is called
Silent Data Corruption
(SDC).
Crash: The OS terminates
the program due to the error.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 3 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Background: Resilience Analysis Methods
Y-Branch:
Y-Branch: To characterize outcome-tolerant branch
(Y-branch)instances. The Y-Branch model uses values “0" and “1" to
represent Y-Branch and non-Y-Branch, respectively.

IPAS:
IPAS take the instruction features as input and outputs the class of
this instruction: Class 0: non-SOC-generating instruction or Class 1:
errors SOC-(Silent Output Corruption )-generating instruction.
We use the rate of SOC-generating instructions in this basic block to
represent the resilience of it.

TRIDENT:
TRIDENT [2] estimates the SDC probability of individual instruction
and the entire program without performing any FIs. We use it to
calculate SDC probabilities of dynamic instructions and use SDC
probabilities to represent the resilience.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 4 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Motivations

Instruction level information is hard to follow.
For example, IPAS identifies the SOC-generating instructions but does

not explicitly help users scope the instructions;

The resulting resilience characteristics of a series of
program states can be scattered, lacking a holistic
view for the users.
For example, TRIDENT models the SDC probability of state transitions

where the state dependency is not presented in the final output.

To classify and summarize the unstructured
resilience-related data generated by those
approaches requires enormous efforts for large-scale
HPC applications;
There is no platform to post-analyze the results from
different resilience frameworks.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 5 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

VISILIENCE Overview
HPC Programs

Trident

IPAS

Y-Branch

Resilience Analysis

execute

Model Execution Data Generation Visualization Construction

Function ID

Label

Nodes Edges

Node ID
Name

Label Shape

Edge ID
Source
Target Color Edge ID

Name

Weight

Function1

Function2

Function3

Function4

Function5

Function6 Function Graph

Function View

Figure: An overall overview of VISILIENCE

(A) Three resilience
analysis models in
Resilience Analysis
part: TRIDENT [2], IPAS
[3] and Y-Branch [4];

(B) Data Generation
part generate CFG
data , and encodes the
resilience analysis
results into a unified
format;

(C) Visualization
Engine takes the
formatted data and
CFG data as input and
outputs an interactive
visual interface of the
resilience analysis
results.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 6 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Benefits of using CFG representation

CFG is widely used in compiler optimizations and static analysis
tools. VISILIENCE uses CFG as a visualization layout due to the fol-
lowing reasons:

A CFG not only comprises functions, basic blocks, instructions,
and execution paths of the program but also shows the
dependency between all these elements. Accommodation of
multiple-level information and dependency can help
programmers understand resilience better.
The data size of an HPC program CFG is hugely smaller than
dynamic program states, which reduces the resilience analysis
time and overhead.
CFG is a graphical representation of a program. It naturally
visualizes how execution traverses a program intuitively.
Weights are added to the edges in the CFG so that one more
data dimension could be represented.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 7 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Data Generation

Figure: CFG json data Figure: Resilience analysis json data

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 8 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Visual Encoding

401300

401310 40131a

401300

401310 40131a

401300

401310 40131a

401300

401310 40131a

CFG Y-Branch

IPAS Trident

0.60.4

0 10.5

RSOC Value
Threshold: 0.5

Not Y-Branch

Y-Branch

Above Threshold

Below Threshold

Basic Block

Dynamic Execution 
Count

SDC Probability

1 100

Figure: Visual encoding diagrams

CFG
Nodes: Basic Blocks
Edges: Control Flows

Y-Branch
Nodes: Green/Red ->
Y-Branch/not
Edges: Control Flow

IPAS
Nodes: Darkness -> Rates
of SOC inst.
Edges: Control Flow

Trident
Nodes: Basic Blocks
Edges: Control Flow
Weights: SDC probability

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 9 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Visualization Engine Design
DC1. Imitate the basic block interface to generate the layout.

Although the sequence of basic blocks is available, a layout that
resembles the basic block interface is still uncertain.

DC2. Enhance the scalability to support real-world data.
The layout generation process module handles both the generation
and rendering tasks. In contrast, many entities will be parsed prior to
the graph rendering. It is a tough job to parse and generate the
position of each node simultaneously. Specifically, powerful hardware
is needed when the velocity force vx and vy of each node are hard to
iterate if the number of entities gets 5000 or more.

DC3. Visualize the connection status between different clusters.
The anomalous edges exist both within the cluster and the
connection between adjacent clusters. The authoring system must
handle the diff array between two different clusters prior to the
generation of the graph layout and the re-rendering stage.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 10 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Visualization Engine System Workflow

Data Source
Parse Layout

Parse Value

Initial Graph Updated Graph

render
Data Mapping

Layout Generation

Visualization Workflow

Figure: The workflow of our visualization system incorporates two stages. The layout
file will be handled and generated the information of nodes and edges includ-
ing vx and vy simulation. Prior to the re-rendering of anomalous mapping.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 11 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Interface

C

B

A

D

Interface

Figure: The interface of VISILIENCE

A Function view is a series of
dots at top represent the
functions;
B The graph is shown in the
Graph view and the nodes
are basic blocks;
C Weight threshold is used to
set the weight threshold;
D The functions with specific
names are listed in Function
List.

Figure: The web link of VISILIENCE

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 12 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Case Study
Detailed Graph

Trident ModelA IPAS ModelB Y-Branch ModelC

Figure: The snapshots of the partial view of CoMD benchmark under three models
Trident: The weights on the edges are the SDC propagation
possibilities between basic blocks.
IPAS: The darkness of the nodes represents the
SOC-generating-instruction rate: the darker the colour, the
higher the rate.
Y-Branch: Basic blocks in Y-Branch node are green or red,
representing Y-branch and non-Y-Branch.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 13 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

Discussion

Scalability

In the visualization process, the capacity of the virtualization engine
in our tool has a limit that each function can accommodate up to
1000 basic blocks.
For our experiments and benchmarks, the number of basic blocks is
far less than 1,000.

Applicability

Besides, Visilience can be combined with other performance profile
tools, such as HPCtoolkits [5], HPCtraceViewer and so on.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 14 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

We propose a novel interactive visualization framework, VISILIENCE

It supports three resilience analysis models and enables the
interpretable resilience analysis results between different analysis
models through several human-computer interactions that help users
understand the resilience data.

The VISILIENCE Visualization Engine is based on the Control Flow
Graph (CFG)

can accommodate information from the instruction level to the
function level. VISILIENCE can be combined with other static analysis
tools which use CFGs. The resilience analysis outcomes based on
CFG can directly guide the compiler optimizations.

A unified JSON data format to Visualize Engine in VISILIENCE

The unified data interface can bridge the gap of understanding the
differences between resilience analysis models.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 15 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

THANK YOU FOR YOUR ATTENTION!

You are welcome to contact:
Hailong Jiang: hjiang13@kent.edu, Kent State University
Shaolun Ruan: haywardryan@foxmail.com, Singapore management
university
Bo Fang: bo.fang@pnnl.gov, Pacific Northwest National Laboratory
Yong Wang: yongwang@smu.edu.sg, Singapore management university
Qiang Guan: qguan@kent.edu, Kent State University

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 16 / 18



Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

References I

[1] Jiesheng Wei et al. “Quantifying the accuracy of high-level fault
injection techniques for hardware faults”. In: 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks. IEEE. 2014, pp. 375–382.

[2] G. Li et al. “Modeling Soft-Error Propagation in Programs”. In:
2018 48th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN). June 2018, pp. 27–
38. DOI: 10.1109/DSN.2018.00016.

[3] Ignacio Laguna et al. “IPAS: Intelligent Protection Against Silent
Output Corruption in Scientific Applications”. In: CGO 2016.
2016.

[4] Nicholas Wang, Michael Fertig, and Sanjay Patel. “Y-branches:
when you come to a fork in the road, take it”. In: Parallel Ar-
chitectures and Compilation Techniques, 2003. PACT 2003.
Proceedings. 12th International Conference on (2003).

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 17 / 18

https://doi.org/10.1109/DSN.2018.00016


Background Motivation VISILIENCE Visualization Engine Design Case Study Summary References

References II

[5] Xu Liu and John Mellor-Crummey. “A Data-Centric Profiler
for Parallel Programs”. In: Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis. SC ’13. Denver, Colorado: Association
for Computing Machinery, 2013. ISBN: 9781450323789. DOI:
10.1145/2503210.2503297. URL: https://doi.org/10.1145/
2503210.2503297.

Hailong Jiang , Shaolun Ruan , Yong Wang , Bo Fang , Qiang Guan VISILIENCE October 22, 2023 18 / 18

https://doi.org/10.1145/2503210.2503297
https://doi.org/10.1145/2503210.2503297
https://doi.org/10.1145/2503210.2503297

	Background
	Soft Errors in High-Performance Computing (HPC) system
	Resilience Analysis to Soft Errors

	Motivation
	Visilience
	Visilience Overview
	Benefits of using CFG representation
	Data Generation
	Visual Encoding

	Visualization Engine Design
	Design Challenges
	Visualization Engine System Workflow
	Interface

	Case Study
	Discussion

	Summary
	References

