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Introduction
Motivation

Overview



| Motivation
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The barrier of creating effective visualizations is high.

Visualizations
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| Visualization Recommendation

Data 1. Rule-based Visualizations
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K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A machine learning approach to visualization recommendation. CHI, 2019.



Can we achieve visualization recommendation that requires no manual

specifications of rules and guarantees good explainability?




| KG4Vis
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Our knowledge graph (KG)-based visualization recommendation
approach is data-driven and explainable.



Method

Feature Extraction
KG Construction
Embedding Learning

Inference



| Feature Extraction
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K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A machine learning approach to visualization recommendation. CHI, 2019.



| KG Construction

Entities:

* Discretized continuous features
« Use each interval after discretization as an entity
* We employ a discretization algorithm based on

minimum description length principle (MDLP)

« Categorical features

 Data columns

* Visual designs

Relations:
* Defined based on entity types

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous valued attributes for classification learning. IJCAI, 1993. 9



| A Example KG

Dataset-visualization Pair
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Triplet (denotes a edge in KG):
(head entity, relation,tail entity) or (h,r,t)
TransE assumption: ‘l\li_l_ r—t||

h+r~t

TransE scoring function (measures the possibility of a triplet):

g(h,rt) = —|lh+r—t|; )

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. NeurlPS, 2013.
Z.Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation in complex space. ICLR, 2019. 11



Rule structure:

a data feature — a visual design choice or f; — vy

Inference steps:

1. Compute rule score (possibility of the rule):

8 fi—v, = _||fi + T + Trarget _Vn”

2. Aggregate all suitable rules' scores of a data column:

1

Z 8 fi—vn

g(dneW7rtarget7Vn) = |F |
new flanew

3. Recommend the design with the highest score
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Evaluation
Quantitative Evaluation
User Study

Case Study
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Methods in comparison:
» TransE-adv (used in KG4Vis): TransE
with self-adversarial negative sampling
* TransE: original TransE
* RotatE: g(h,rt)=— ||hor—t||1/2

Metrics:
* MR: mean rank of the correct
design choices
* Hits@2: proportion of correct
design choices ranked in the top
two recommendations

Axis Visualization Type

Accuracy B MR Hits@2
TransE-adv ~ 0.7350 1.9567 0.7489
TransE 0.7214 1.9718  0.7445
RotatE 0.7193 1.9608  0.7458

TransE-adv outperforms others.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. NeurlPS, 2013.
Z.Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation in complex space. ICLR, 2019. 14



| Expert Interview
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Results:
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| Case Study
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Our methods can learn commonly used explicit and implicit visual design rules.
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| Comparison with Empirical Studies

Ours align well with empirical rules:
 Bar charts are suitable for

identifying clusters
* Scatter plots should be used

to find anomalies

B. Saket, A. Endert, and C. Demiralp. Task-based effectiveness of basic visualizations. TVCG, 2019.
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L essons
Pros and Cons

Future Work
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1. Knowledge graph for visualizations
«  Entity construction: discretize continuous features
« Embedding learning: facilitate inference and rule generation

2. Explainability of rules
« Straightforward features in conditions
*  Number of conditions



1. Compared with rule-based methods
« Have better extendability and require less human effort
* Rely on the quality of corpus

2. Compared with ML-based methods
* Improve the explainability
« Have potential performance drop
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Introduce more visual designs such as color usage
Consider analytical tasks and cross-column data features

Extend to more visualization types including infographics



| Take-home Message
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« Knowledge graph provides an intuitive way to model the relationship
between data and visualizations.

* Representing entities and relations with embeddings facilitates the

further inference and the rule generation.

« Many factors affects the explainability of visualization rules, such as the

complexity of features and the number of conditions.
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https://kg4vis.github.io/

