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Motivation

The barrier of creating effective visualizations is high.
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Visualization Recommendation

K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A machine learning approach to visualization recommendation. CHI, 2019.
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Research Question

Can we achieve visualization recommendation that requires no manual 
specifications of rules and guarantees good explainability?
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KG4Vis

Our knowledge graph (KG)-based visualization recommendation 
approach is data-driven and explainable.
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Feature Extraction

K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A machine learning approach to visualization recommendation. CHI, 2019.
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KG Construction

Entities:
• Discretized continuous features

• Use each interval after discretization as an entity
• We employ a discretization algorithm based on 

minimum description length principle (MDLP)
• Categorical features
• Data columns
• Visual designs

Relations:
• Defined based on entity types

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous valued attributes for classification learning. IJCAI, 1993.
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A Example KG
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Embedding Learning

Triplet (denotes a edge in KG):

or

TransE scoring function (measures the possibility of a triplet):

TransE assumption:

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. NeurIPS, 2013.
Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation in complex space. ICLR, 2019.
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Inference

Rule structure:

1. Compute rule score (possibility of the rule):

or

2. Aggregate all suitable rules' scores of a data column:

3. Recommend the design with the highest score

Inference steps:
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Quantitative Evaluation

Metrics:
• MR: mean rank of the correct 

design choices 
• Hits@2: proportion of correct 

design choices ranked in the top 
two recommendations

Methods in comparison:
• TransE-adv (used in KG4Vis): TransE

with self-adversarial negative sampling
• TransE: original TransE
• RotatE: 

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. NeurIPS, 2013.
Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation in complex space. ICLR, 2019.

TransE-adv outperforms others.
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Expert Interview

Average scores of recommended visualizations

Results:
• Most of the rules are of high quality, but 

some features need to be further 
improved.

• The recommended visualizations are 
correct. Users' analytical tasks should be 
further taken into consideration.
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Case Study

Our methods can learn commonly used explicit and implicit visual design rules.
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Comparison with Empirical Studies

Ours align well with empirical rules:
• Bar charts are suitable for 

identifying clusters
• Scatter plots should be used 

to find anomalies

B. Saket, A. Endert, and C. Demiralp. Task-based effectiveness of basic visualizations. TVCG, 2019.
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Lessons

1. Knowledge graph for visualizations
• Entity construction: discretize continuous features
• Embedding learning: facilitate inference and rule generation

2. Explainability of rules
• Straightforward features in conditions
• Number of conditions
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Pros and Cons

1. Compared with rule-based methods
• Have better extendability and require less human effort
• Rely on the quality of corpus

2. Compared with ML-based methods
• Improve the explainability
• Have potential performance drop
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Future Work

• Introduce more visual designs such as color usage

• Consider analytical tasks and cross-column data features

• Extend to more visualization types including infographics
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Take-home Message

• Knowledge graph provides an intuitive way to model the relationship 
between data and visualizations.

• Representing entities and relations with embeddings facilitates the 
further inference and the rule generation.

• Many factors affects the explainability of visualization rules, such as the 
complexity of features and the number of conditions.
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