

KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation

Haotian Li^{1,2}

Yong Wang² Songheng Zhang² Yanggiu Song¹

Huamin Qu¹

Introduction Motivation Overview Method

Evaluation

Discussion

Motivation

The barrier of creating effective visualizations is high.

Visualization Recommendation

Research Question

Can we achieve visualization recommendation that <u>requires no manual</u> <u>specifications of rules</u> and <u>guarantees good explainability</u>?

Our knowledge graph (<u>KG</u>)-based <u>vis</u>ualization recommendation approach is **data-driven** and **explainable**.

Introduction

Method

Feature Extraction KG Construction

Embedding Learning

Inference

Evaluation

Discussion

Feature Extraction

KG Construction

Entities:

- <u>D</u>iscretized continuous <u>f</u>eatures
 - Use each interval after discretization as an entity
 - We employ a discretization algorithm based on minimum description length principle (MDLP)
- <u>Categorical features</u>
- <u>D</u>ata columns
- <u>V</u>isual designs

Relations:

• Defined based on entity types

A Example KG

Embedding Learning

Triplet (denotes a edge in KG):

(head entity, relation, tail entity) or (h, r, t)

TransE assumption:

 $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$

TransE scoring function (measures the possibility of a triplet):

 $g(h, r, t) = -||\mathbf{h} + \mathbf{r} - \mathbf{t}||_{1/2}$

Inference

Rule structure:

a data feature \rightarrow a visual design choice or $f_i \rightarrow v_n$

Inference steps:

1. Compute rule score (possibility of the rule):

 $g_{f_i \to v_n} = -||\mathbf{f}_i + \mathbf{r}_j + \mathbf{r}_{target} - \mathbf{v}_n||$

2. Aggregate all suitable rules' scores of a data column:

$$g(d_{new}, r_{target}, v_n) = \frac{1}{|F_{new}|} \sum_{f_i \in F_{new}} g_{f_i \to v_n}$$

3. Recommend the design with the highest score

Introduction

Method

Evaluation

Quantitative Evaluation User Study Case Study

Discussion

Quantitative Evaluation

Methods in comparison:

- <u>TransE-adv (used in KG4Vis)</u>: TransE with self-adversarial negative sampling
- TransE: original TransE
- RotatE: $g(h, r, t) = \|\mathbf{h} \circ \mathbf{r} \mathbf{t}\|_{1/2}$

Metrics:

- *MR*: mean rank of the correct design choices
- *Hits@2*: proportion of correct design choices ranked in the top two recommendations

	Axis	Visualization Type	
	Accuracy	MR	Hits@2
TransE-adv	0.7350	1.9567	0.7489
TransE	0.7214	1.9718	0.7445
RotatE	0.7193	1.9608	0.7458

TransE-adv outperforms others.

Expert Interview

Results:

- Most of the rules are of high quality, but some features need to be further improved.
- The recommended visualizations are correct. Users' analytical tasks should be further taken into consideration.

Average scores of recommended visualizations

Case Study

Our methods can learn commonly used explicit and implicit visual design rules.

Comparison with Empirical Studies

Ours align well with empirical rules:

- Bar charts are suitable for identifying clusters
- Scatter plots should be used to find anomalies

Introduction

Method

Evaluation

Discussion

Lessons

Pros and Cons

Future Work

- 1. Knowledge graph for visualizations
 - Entity construction: discretize continuous features
 - Embedding learning: facilitate inference and rule generation
- 2. Explainability of rules
 - Straightforward features in conditions
 - Number of conditions

Pros and Cons

- 1. Compared with rule-based methods
 - Have better extendability and require less human effort
 - Rely on the quality of corpus
- 2. Compared with ML-based methods
 - Improve the explainability
 - Have potential performance drop

- Introduce more visual designs such as color usage
- Consider analytical tasks and cross-column data features
- Extend to more visualization types including infographics

Take-home Message

- Knowledge graph provides an intuitive way to model the relationship between data and visualizations.
- Representing entities and relations with embeddings facilitates the further inference and the rule generation.
- Many factors affects the explainability of visualization rules, such as the complexity of features and the number of conditions.

KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation

https://kg4vis.github.io/

