

## REAL: A <u>Representative Error</u> Driven Approach for <u>Active Learning</u>

Cheng Chen<sup>1,2</sup>, Yong Wang<sup>2</sup>, Lizi Liao<sup>2</sup>, Yueguo Chen<sup>1</sup>, Xiaoyong Du<sup>1</sup>





1

### Active Learning (AL)

Pool-based sampling

### Background-Uncertainty

Uncertainty-based AL selects the most uncertain instances for the model.



### Background-Diversity

Diversity-based AL aims to maximize the diversity of sampled instances.



### **Motivation-REAL**

Erroneous instances are more informative for AL [1,2]. REAL selects *representative errors* near decision boundary.



[1] Choi et al., Vab-al: Incorporating class imbalance and difficulty with variational bayes for active learning, CVPR'2021
[2] Krempl et al., Optimised probabilistic active learning (opal) for fast, non-myopic, cost-sensitive active classification. ML'2015

### Contributions

- REAL: a new AL sampling algorithm dedicated to representative errors.
- New SOTA result on five text classification benchmarks.
- Insights on error distribution:
  - most errors are along the decision boundary;
  - REAL's active selections align well with that of ground-truth errors.

### REAL: <u>Representative Error-Driven Active Learning</u>



- K-Means clustering
- Assign pseudo labels
- Find pseudo errors
- Add least confidence

### **REAL - Pseudo Error Identification**

• The predicted label for an individual instance:

$$\widetilde{y}_i = \operatorname*{argmax}_{j \in \{1, \dots, Y\}} [\mathcal{M}(\mathbf{x}_i; \theta^{(t)})]_j$$

• The pseudo label of cluster:

$$y_{maj} = \underset{j}{\operatorname{argmax}} (\sum_{i \in \mathcal{C}_k^{(t)}} \mathbb{1}\{\widetilde{y}_i = j\}) / |\mathcal{C}_k^{(t)}|$$

• The instances that are not predicted as  $y_{maj}$  are defined as pseudo errors in the corresponding cluster  $C_k^{(t)}$ .

### **REAL - Adaptive Sampling**

- Goal: adaptive sampling of representative errors
- Single instance's erroneous probability:

 $\epsilon(\mathbf{x}_e) = 1 - [\mathcal{M}(\mathbf{x}_e; \theta^{(t)})]_{maj}$ 

• The density of pseudo errors  $\epsilon_k$  for cluster  $\mathcal{C}_k^{(t)}$ :

$$\epsilon_k = \sum \epsilon(\mathbf{x}_e)$$

• The sampling budget  $b_k$  for the cluster  $\mathcal{C}_k^{(t)}$ :

$$b_k = \left\lfloor b \frac{\epsilon_k}{\sum_i \epsilon_i} \right\rfloor, \forall k \in \{1 \dots K\}$$

### Experiments

- Task: AL for text classification
- Model: RoBERTa-base
- Datasets: Table 1: Dataset statistics. **#TRAIN** #VAL #test #CLASSES DATASET LABEL TYPE Sentiment 3K 1.8K 40K SST-2  $\mathbf{2}$ News Topic 80K 3K 7.6K 4 AGNEWS Medical Abstract 3K 100K 30.1K  $\mathbf{5}$ PUBMED 13K 0.7K 0.7K Intent  $\overline{7}$ SNIPS Question 8.0K 1K1K10STOV
- Eight baselines

Results - Accuracy







(a) SST-2









(e) STOV



(f) Legend

### REAL: A <u>Representative Error</u>-Driven Approach for <u>Active Learning</u>

Error rate of the actively selected instances  ${\boldsymbol{Q}}$  .

#### $\varepsilon(\mathcal{D}_u)$

Error rate of the whole unlabeled pool (as test set).

#### lift

 $\varepsilon(Q)/\varepsilon(\mathcal{D}_u)$ 

#### $\ell_0$

Average first step training loss for the the actively selected instances  $Q\,.$ 

| DATASET | METRIC                       | Entropy | Рім-км | Badge  | Cal     | AcTune  | Random | Real    |
|---------|------------------------------|---------|--------|--------|---------|---------|--------|---------|
| sst-2   | $\varepsilon(Q)$             | 0.4959  | 0.1841 | 0.2308 | 0.4821  | 0.4334  | 0.1284 | 0.4739  |
|         | $\varepsilon(\mathcal{D}_u)$ | 0.1194  | 0.1251 | 0.1259 | 0.1215  | 0.1170  | 0.1338 | 0.1212  |
|         | lift                         | 4.1530  | 1.4713 | 1.8325 | 3.9670  | 3.7055  | 0.9596 | 3.9113  |
|         | $\ell_0$                     | 0.6984  | 0.8100 | 1.0538 | 0.6915  | 0.8526  | 0.6660 | 0.9938  |
|         | $\varepsilon(Q)$             | 0.6092  | 0.1904 | 0.2246 | 0.5637  | 0.5325  | 0.1142 | 0.5537  |
|         | $arepsilon(\mathcal{D}_u)$   | 0.1009  | 0.1039 | 0.1041 | 0.0995  | 0.0991  | 0.1115 | 0.0959  |
| AGNEWS  | lift                         | 6.0377  | 1.8320 | 2.1576 | 5.6667  | 5.3730  | 1.0239 | 5.7737  |
|         | $\ell_0$                     | 1.2504  | 0.8597 | 0.9477 | 1.0926  | 1.3009  | 0.5707 | 1.3636  |
|         | $\varepsilon(Q)$             | 0.6701  | 0.3164 | 0.3634 | 0.6103  | 0.6231  | 0.1987 | 0.6046  |
| DUDMED  | $\varepsilon(\mathcal{D}_u)$ | 0.1943  | 0.1971 | 0.1928 | 0.1941  | 0.1907  | 0.1998 | 0.1858  |
| POBMED  | lift                         | 3.4487  | 1.6048 | 1.8845 | 3.1452  | 3.2670  | 0.9943 | 3.2531  |
|         | $\ell_0$                     | 1.5117  | 1.3533 | 1.6009 | 1.2871  | 1.4494  | 1.0222 | 1.7040  |
|         | $\varepsilon(Q)$             | 0.4107  | 0.1226 | 0.1120 | 0.4237  | 0.2963  | 0.0276 | 0.4002  |
| GNIDG   | $arepsilon(\mathcal{D}_u)$   | 0.0268  | 0.0337 | 0.0308 | 0.0280  | 0.0265  | 0.0393 | 0.0231  |
| SNIPS   | lift                         | 15.3183 | 3.6410 | 3.6338 | 15.1568 | 11.1895 | 0.7023 | 17.2902 |
|         | $\ell_0$                     | 1.0176  | 0.5209 | 0.5080 | 1.0470  | 0.9491  | 0.1842 | 0.9356  |
| STOV    | $\varepsilon(Q)$             | 0.7328  | 0.2536 | 0.3506 | 0.6904  | 0.6659  | 0.1307 | 0.7162  |
|         | $\varepsilon(\mathcal{D}_u)$ | 0.1048  | 0.1263 | 0.1209 | 0.1094  | 0.1101  | 0.1386 | 0.1045  |
|         | lift                         | 6.9934  | 2.0079 | 2.8994 | 6.3114  | 6.0509  | 0.9435 | 6.8548  |
|         | $\ell_0$                     | 2.1434  | 1.0260 | 1.3874 | 2.0255  | 2.0062  | 0.6331 | 2.1131  |

13

#### $\varepsilon(Q)$

Error rate of the actively selected instances  $\boldsymbol{Q}$  .

#### $\varepsilon(\mathcal{D}_u)$

Error rate of the whole unlabeled pool (as test set).

#### lift

 $\varepsilon(Q)/\varepsilon(\mathcal{D}_u)$ 

#### $\ell_0$

Average first step training loss for the the actively selected instances  $Q\,.$ 

|         |                              |         | N 2 1  |        |         | -       | -      | -       |
|---------|------------------------------|---------|--------|--------|---------|---------|--------|---------|
| DATASET | METRIC                       | Entropy | Рім-км | Badge  | Cal     | AcTune  | Random | Real    |
| SST-2   | $\varepsilon(Q)$             | 0.4959  | 0.1841 | 0.2308 | 0.4821  | 0.4334  | 0.1284 | 0.4739  |
|         | $\varepsilon(\mathcal{D}_u)$ | 0.1194  | 0.1251 | 0.1259 | 0.1215  | 0.1170  | 0.1338 | 0.1212  |
|         | lift                         | 4.1530  | 1.4713 | 1.8325 | 3.9670  | 3.7055  | 0.9596 | 3.9113  |
|         | $\ell_0$                     | 0.6984  | 0.8100 | 1.0538 | 0.6915  | 0.8526  | 0.6660 | 0.9938  |
|         | $\varepsilon(Q)$             | 0.6092  | 0.1904 | 0.2246 | 0.5637  | 0.5325  | 0.1142 | 0.5537  |
|         | $arepsilon(\mathcal{D}_u)$   | 0.1009  | 0.1039 | 0.1041 | 0.0995  | 0.0991  | 0.1115 | 0.0959  |
| AGNEWS  | lift                         | 6.0377  | 1.8320 | 2.1576 | 5.6667  | 5.3730  | 1.0239 | 5.7737  |
|         | $\ell_0$                     | 1.2504  | 0.8597 | 0.9477 | 1.0926  | 1.3009  | 0.5707 | 1.3636  |
|         | $\varepsilon(Q)$             | 0.6701  | 0.3164 | 0.3634 | 0.6103  | 0.6231  | 0.1987 | 0.6046  |
| DUDMED  | $\varepsilon(\mathcal{D}_u)$ | 0.1943  | 0.1971 | 0.1928 | 0.1941  | 0.1907  | 0.1998 | 0.1858  |
| PUBMED  | lift                         | 3.4487  | 1.6048 | 1.8845 | 3.1452  | 3.2670  | 0.9943 | 3.2531  |
|         | $\ell_0$                     | 1.5117  | 1.3533 | 1.6009 | 1.2871  | 1.4494  | 1.0222 | 1.7040  |
|         | $\varepsilon(Q)$             | 0.4107  | 0.1226 | 0.1120 | 0.4237  | 0.2963  | 0.0276 | 0.4002  |
| CNIDC   | $arepsilon(\mathcal{D}_u)$   | 0.0268  | 0.0337 | 0.0308 | 0.0280  | 0.0265  | 0.0393 | 0.0231  |
| SNIPS   | lift                         | 15.3183 | 3.6410 | 3.6338 | 15.1568 | 11.1895 | 0.7023 | 17.2902 |
|         | $\ell_0$                     | 1.0176  | 0.5209 | 0.5080 | 1.0470  | 0.9491  | 0.1842 | 0.9356  |
| STOV    | $\varepsilon(Q)$             | 0.7328  | 0.2536 | 0.3506 | 0.6904  | 0.6659  | 0.1307 | 0.7162  |
|         | $\varepsilon(\mathcal{D}_u)$ | 0.1048  | 0.1263 | 0.1209 | 0.1094  | 0.1101  | 0.1386 | 0.1045  |
|         | lift                         | 6.9934  | 2.0079 | 2.8994 | 6.3114  | 6.0509  | 0.9435 | 6.8548  |
|         | $\ell_0$                     | 2.1434  | 1.0260 | 1.3874 | 2.0255  | 2.0062  | 0.6331 | 2.1131  |

 $\varepsilon(Q)$ 

Error rate of the actively selected instances  $\boldsymbol{Q}$  .

 $\varepsilon(\mathcal{D}_u)$ 

Error rate of the whole unlabeled pool (as test set).

lift

 $\varepsilon(Q)/\varepsilon(\mathcal{D}_u)$ 

 $\ell_0$ 

Average first step training loss for the the actively selected instances  $Q\,.$ 

| DATASET       | METRIC                       | Entropy | Рьм-км | Badge  | CAL     | ACTINE  | DANDON | Drat         |
|---------------|------------------------------|---------|--------|--------|---------|---------|--------|--------------|
|               | $\epsilon(O)$                |         |        |        | OAL     | ACIONE  | RANDOM | <b>R</b> EAL |
|               | $c(\varphi)$                 | 0.4959  | 0.1841 | 0.2308 | 0.4821  | 0.4334  | 0.1284 | 0.4739       |
| ~~ 0 <b>[</b> | $\varepsilon(\mathcal{D}_u)$ | 0.1194  | 0.1251 | 0.1259 | 0.1215  | 0.1170  | 0.1338 | 0.1212       |
| SST-2         | lift                         | 4.1530  | 1.4713 | 1.8325 | 3.9670  | 3.7055  | 0.9596 | 3.9113       |
|               | $\ell_0$                     | 0.6984  | 0.8100 | 1.0538 | 0.6915  | 0.8526  | 0.6660 | 0.9938       |
|               | $\varepsilon(Q)$             | 0.6092  | 0.1904 | 0.2246 | 0.5637  | 0.5325  | 0.1142 | 0.5537       |
|               | $\varepsilon(\mathcal{D}_u)$ | 0.1009  | 0.1039 | 0.1041 | 0.0995  | 0.0991  | 0.1115 | 0.0959       |
| AGNEWS        | lift                         | 6.0377  | 1.8320 | 2.1576 | 5.6667  | 5.3730  | 1.0239 | 5.7737       |
| _             | $\ell_0$                     | 1.2504  | 0.8597 | 0.9477 | 1.0926  | 1.3009  | 0.5707 | 1.3636       |
|               | $\varepsilon(Q)$             | 0.6701  | 0.3164 | 0.3634 | 0.6103  | 0.6231  | 0.1987 | 0.6046       |
|               | $\varepsilon(\mathcal{D}_u)$ | 0.1943  | 0.1971 | 0.1928 | 0.1941  | 0.1907  | 0.1998 | 0.1858       |
| PUBMED        | lift                         | 3.4487  | 1.6048 | 1.8845 | 3.1452  | 3.2670  | 0.9943 | 3.2531       |
| -             | $\ell_0$                     | 1.5117  | 1.3533 | 1.6009 | 1.2871  | 1.4494  | 1.0222 | 1.7040       |
|               | $\varepsilon(Q)$             | 0.4107  | 0.1226 | 0.1120 | 0.4237  | 0.2963  | 0.0276 | 0.4002       |
|               | $\varepsilon(\mathcal{D}_u)$ | 0.0268  | 0.0337 | 0.0308 | 0.0280  | 0.0265  | 0.0393 | 0.0231       |
| SNIPS         | lift                         | 15.3183 | 3.6410 | 3.6338 | 15.1568 | 11.1895 | 0.7023 | 17.2902      |
| L             | $\ell_0$                     | 1.0176  | 0.5209 | 0.5080 | 1.0470  | 0.9491  | 0.1842 | 0.9356       |
|               | $\varepsilon(Q)$             | 0.7328  | 0.2536 | 0.3506 | 0.6904  | 0.6659  | 0.1307 | 0.7162       |
| amoti -       | $arepsilon(\mathcal{D}_u)$   | 0.1048  | 0.1263 | 0.1209 | 0.1094  | 0.1101  | 0.1386 | 0.1045       |
| STOV          | lift                         | 6.9934  | 2.0079 | 2.8994 | 6.3114  | 6.0509  | 0.9435 | 6.8548       |
|               | $\ell_0$                     | 2.1434  | 1.0260 | 1.3874 | 2.0255  | 2.0062  | 0.6331 | 2.1131       |

|                                                        |         |                                         |         |        | -      |         |         | _      |         |
|--------------------------------------------------------|---------|-----------------------------------------|---------|--------|--------|---------|---------|--------|---------|
| Poculte                                                | DATASET | METRIC                                  | Entropy | Рьм-км | Badge  | Cal     | AcTune  | Random | Real    |
| RESUILS.                                               |         | $\varepsilon(Q)$                        | 0.4959  | 0.1841 | 0.2308 | 0.4821  | 0.4334  | 0.1284 | 0.4739  |
| Error Data                                             |         | $\varepsilon(\mathcal{D}_u)$            | 0.1194  | 0.1251 | 0.1259 | 0.1215  | 0.1170  | 0.1338 | 0.1212  |
|                                                        | SST-2   | lift                                    | 4 1530  | 1.4713 | 1.8325 | 3.9670  | 3,7055  | 0.9596 | 3.9113  |
|                                                        |         | $\ell_0$                                | 0.6984  | 0.8100 | 1.0538 | 0.6915  | 0.8526  | 0.6660 | 0.9938  |
| $\varepsilon(Q)$                                       |         | $\varepsilon(Q)$                        | 0.6092  | 0.1904 | 0.2246 | 0.5637  | 0.5325  | 0.1142 | 0.5537  |
|                                                        | AGNEWS  | $arepsilon(\mathcal{D}_{oldsymbol{u}})$ | 0.1009  | 0.1039 | 0.1041 | 0.0995  | 0.0991  | 0.1115 | 0.0959  |
| Error rate of the actively selected instances $\Omega$ |         | lift                                    | 6.0377  | 1.8320 | 2.1576 | 5.6667  | 5.3730  | 1.0239 | 5.7737  |
| instances of .                                         |         | $\ell_0$                                | 1.2504  | 0.8597 | 0.9477 | 1.0926  | 1.3009  | 0.5707 | 1.3636  |
| $arepsilon({\mathcal D}_u)$                            |         | arepsilon(Q)                            | 0.6701  | 0.3164 | 0.3634 | 0.6103  | 0.6231  | 0.1987 | 0.6046  |
| Error rate of the whole unlabeled                      |         | $arepsilon(\mathcal{D}_u)$              | 0.1943  | 0.1971 | 0.1928 | 0.1941  | 0.1907  | 0.1998 | 0.1858  |
| pool (as test set).                                    | FUBMED  | lift                                    | 3.4487  | 1.6048 | 1.8845 | 3.1452  | 3.2670  | 0.9943 | 3.2531  |
|                                                        |         | $\ell_0$                                | 1.5117  | 1.3533 | 1.6009 | 1.2871  | 1.4494  | 1.0222 | 1.7040  |
| lift                                                   |         | $\varepsilon(Q)$                        | 0.4107  | 0.1226 | 0.1120 | 0.4237  | 0.2963  | 0.0276 | 0.4002  |
| $a(\Omega)/a(\mathcal{D})$                             | SNIPS   | $arepsilon(\mathcal{D}_u)$              | 0.0268  | 0.0337 | 0.0308 | 0.0280  | 0.0265  | 0.0393 | 0.0231  |
| $\varepsilon(\mathcal{Q})/\varepsilon(\mathcal{D}_u)$  |         | lift                                    | 15.3183 | 3.6410 | 3.6338 | 15.1568 | 11.1895 | 0.7023 | 17.2902 |
| Q_                                                     |         | $\ell_0$                                | 1.0176  | 0.5209 | 0.5080 | 1.0470  | 0.9491  | 0.1842 | 0.9356  |
| $\epsilon_0$                                           | STOV    | arepsilon(Q)                            | 0.7328  | 0.2536 | 0.3506 | 0.6904  | 0.6659  | 0.1307 | 0.7162  |
| Average first step training loss for                   |         | $arepsilon(\mathcal{D}_u)$              | 0.1048  | 0.1263 | 0.1209 | 0.1094  | 0.1101  | 0.1386 | 0.1045  |
| instances Q. [3]                                       |         | lift                                    | 6.9934  | 2.0079 | 2.8994 | 6.3114  | 6.0509  | 0.9435 | 6.8548  |
|                                                        |         | $\ell_0$                                | 2.1434  | 1.0260 | 1.3874 | 2.0255  | 2.0062  | 0.6331 | 2.1131  |

[3] Yoo et al., Learning Loss for Active Learning, CVPR'2019





### **Results – Representative Errors**



(a) AGNEWS

(b) PUBMED

### **Ablation Study**

• Most variants of REAL still performs well



### Hyperparameter

• Mean acc under a wide range of #clusters



(a) AGNEWS

REAL 0.824 AcTune 0.822 0.820 Wean Acc Mean Acc Mean Acc 0.816 0.814 0.812 20 25 30 35 200 400 600 800 Κ

0.826

(b) PUBMED

### Takeaways





• Key: adaptive budget allocation



Most unlabeled errors lie around the decision boundary

• Finding those errors for labeling can improve AL

# Thank you for your attention!





### REAL: A <u>Representative Error-Driven</u> Approach for <u>Active Learning</u>

Cheng Chen<sup>1,2</sup>, Yong Wang<sup>2</sup>, Lizi Liao<sup>2</sup>, Yueguo Chen<sup>1</sup>, Xiaoyong Du<sup>1</sup>

Code & data: <u>https://github.com/withchencheng/ECML\_PKDD\_23\_Real</u> Contact me: <u>chchen@ruc.edu.cn</u>

