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Abstract As a new and promising biometric feature,

thermal palm vein pattern has drawn lots of attention in

research and application areas. Many algorithms have been

proposed for authentication since palm vein has special

characteristics, such as liveness detection and hard to

forgery. However, the detection accuracy of palm vein

quite depends on the preprocessing and feature represen-

tation, which is supposed to be translation and rotation

invariant to some extent. In this paper, we proposed an

effective method for palm vein identification based on

Gabor wavelet features which contains five steps: image

acquisition, ROI detection, image preprocessing, features

extraction, and matching. The 178 palm vein images from

101 persons were used to test the proposed palm vein

recognition approach, where 176 images were correctly

recognized with two in failure. The experimental results

demonstrate the effectiveness of the proposed approach.

Keywords Palm vein � Biological identification �
Gabor wavelet

1 Introduction

Biological identification is one of the most important

research issues in bioinformatics, which have been widely

used in various fields [1, 2, 7, 21]; especially, in recent

years, the personal identification using vein patterns has

been impressive because of its value of application in

security systems. The following five collected properties

are able to prove it to be a promising research focusing in

the biometric identification field: (1) all the biometric

characteristics embodied by the vein patterns are typically

universal and unique [2]; (2) veins underneath the surface

of the palm are relatively stable with the growth of age [3];

(3) vein pattern is hard for intruders to forge or change due

to its inside characteristic, and it is superior to the tradi-

tional fingerprint methods that would be fail if the finger-

prints are ruined [4]; (4) objects who are going to be

checked must be alive in the condition that thermal infrared

can work [5]; (5) the process is more comfortable and

friendly compared with DNA and iris pattern recognition

[6].

The typical methods for palm vein pattern identification

were proposed in [8, 9]. These methods first extract the

feature points of vein pattern (junctions and endings) from

the ROI of the original input image. And then implement

the multiple resolution analysis (MRA) on FPVPs. Finally,

the feature-match of the vein pattern images is accom-

plished for the identification. The above papers demon-

strate the methods’ effect by using the experiments.

However, these methods’ accuracy rate would be affected

by the loss of a number of minutiae, as well as drops with

the increasing subjects because the feature points are not

enough to describe the shape of the palm vein pattern.

An improved method in [4] is simple and easy for

hardware algorithm design. It includes five individual

processing stages: hand image acquisition, image

enhancement, vein pattern segmentation, skeletonization

and matching. The 108 blood vessels images have been

verified correctly and accurately using this method. Simi-

larly in the method in [10], the similarity of two palm

images is calculated by template matching. However,

although the attractive verification rates have been stated, it
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is not illustrated in the above papers whether skeleton or

binary of palm vein image is enough for identification

based on image matching.

To address the problems mentioned above, the appear-

ance-based methods, such as eigenvein and Laplacianpalm

features [11, 12], were proposed to represent palm veins. In

[11], an alternate two-dimensional PCA was presented to

exploit the correlation of vein features between images. In

[12], a palm representation called Laplacianpalm was

proposed that finds local information and yields a palm

space to best detect the essential manifold structure.

Therefore, these methods cannot effectively exploit both

global and local features of palm veins, which play an

important role in recognition [13].

According to the above analysis, a palm vein identification

system based on Gabor wavelet transform is proposed in this

paper. Although some well-known techniques and algorithms

are introduced into our method, many innovative processes

different from existing methods are presented. The main

contributions of this paper are as below.

Because the palm veins in the image are not very clear

suffering from messy palm prints, it is difficult to extract

features of vein patterns. For such input pictures with poor

quality, we design a sequence of preprocessing steps that

enhances the contrast between palm vein patterns and

background using contrast limited adaptive histogram

equalization (CLAHE), alleviates negative influences by

palm prints using a 2-D Gaussian low-pass filter, and

removes isolated noise around the vein patterns using

morphological methods.

Different from the existing popular methods, there are

two reasons that we adopt Gabor wavelet features as the

representation of palm vein patterns in the skeleton image.

One reason is that the Gabor-based method [14] can

effectively analyze variations in the intensity which reflect

most of the random shape information in the skeleton

image of palm veins. The other reason is that Gabor

wavelet features are not sensitive to rotation and shift

variations, which are quite common and inevitable on the

stage of data acquisition.

The rest of this paper is organized as follows. Section 2

illustrates the proposed methods step by step in detail.

Section 3 provides experimental results and discussions.

And some important conclusions are given in Sect. 4.

2 Methods

The proposed palm vein verification method is shown in

Fig. 1, which includes five steps: image acquisition,

enhancement, segmentation, skeletonization and matching.

Detailed descriptions of these five steps are introduced in

the following sections.

2.1 Image acquisition

As there is no publicly available palm vein pattern database

for research purpose, we establish our own near-infrared

(NIR) palm vein pattern image database. A NIR charge-

coupled device (CCD) camera is adopted as an input device

for capturing palm vein images. Although principally being

designed for use in visible light, these CCD cameras are

also sensitive to NIR wavelengths of the electromagnetic

spectrum up to nearly 1,100 nm. This is within the actinic

IR range, which covers the NIR spectrum from 700 to

1,400 nm [13]. Besides, it has the benefits of high avail-

ability, good image quality and low cost. In our work, the

NIR light source (LEDs) is evenly and circularly located

around the camera and peaks at 850 nm wavelength. It

should also be noted that an optical infrared filter is sup-

posed to be mounted in front of the camera’s lens since the

CCD is also sensitive to visible light. And to achieve the

best acquisition, the user should put his/her hand on a plane

in front of the camera with the fingers spreading naturally

at a fixed distance about 25 cm away from the cameras.

Then, palm vein images can be obtained from the CCD

sensor with NIR light source. In order to achieve accurate

and reliable verification, the ROI is needed to be detected

for different thermal images of vein patterns share the same

region. Figure 5a shows the ROI gained by the ROI

extracting algorithm proposed in [8], where the second and

Fig. 1 Process of palm vein identification
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fourth finger webs are selected as the datum points to

define a square ROI. The resolutions of the captured palm

vein images are 640 9 480 while the size of the square

ROI is approximately 128 9 128 with 256 gray levels. In

our experiment, the 128 9 128 regions are resized to

64 9 64 pixels in the training and testing procedure, since

the 64 9 64 resolution has been verified to be optimal for

high-security biometric systems [11].

2.2 Image enhancement

In order to decrease costs, the applied CCD in our exper-

iment is a cheap one, which leads to the poor quality of

pictures. As a result, the contrast of the palm vein images is

so awful that it is difficult to distinguish between palm

veins and backgrounds visibly. Figure 2 shows the histo-

gram statistics of the ROI where all the gray values gather

up from 117 to 211 without obvious watershed between

palm veins and backgrounds.

At first, the histogram equalization (HE) is employed

here to enhance the contrast. However, experiments show

that some gray values with less possession of pixels are

gathered in HE, which results in blurry palm veins.

Therefore, considering the drawbacks of HE, an improved

version of HE, namely CLAHE is applied to maintain the

image details and enhance the contrast between vein pat-

terns and the backgrounds. The CLAHE is carried out by

the way just like what is described in [15]:

Step1: Divide the image into a series of sub-regions

Step2: Clip the histograms of sub-regions based on

clipping limits

Step3: Equalize the histograms of sub-regions

Step4: Interpolate every single pixel to get a new gray

value

Figure 3 exhibits the enhancement results by HE and

CLAHE. It is shown that the HE intensifies the contrast

while blurs the details of the image. By comparison,

CLAHE can strike the balance between the contrast and the

details effectively.

Then, there is a problem that palm veins and prints are

both obviously visible in the image we have got. Therefore,

to facilitate correct identification and matching, they are

obliged to be processed in a way with palm veins remained

and prints suppressed. In this section, a 2D Gaussian low-

pass filter H l; cð Þ ¼ e�D2ðl;cÞ=2r2

with standard deviation

r = 0.8 is used to remove the palm prints effectively. As

shown in Fig. 4, after the low-pass filtering, the vein pat-

terns become smoother on their edges while the palm prints

disappear as high-frequency signals. On the contrary, after

the high-pass filter, while the contrast between vein pat-

terns and background is enhanced, the palm veins are also

highlighted.

2.3 Image segmentation

After the enhancement, palm veins and backgrounds con-

tain less noise such as palm prints and high-frequency

noise and are more easily distinguished. As the ultimate

goal is to extract the vein pattern, it is needed to separate

the veins from the backgrounds. The gray-level intensity

values of both veins and backgrounds vary from one region

to another in the image. And parts of them share the same

location in the gray histogram instead of bimodal distri-

bution. A single global thresholding is not enough for the

image segmentation, while local thresholdings lead to

shadows and manmade borders. Therefore, a dynamic

thresholding [16] is necessary here to guarantee the accu-

racy and completeness of segmentation. Every pixel in the

image is assigned a threshold on the analysis of its n 9 n

neighborhoods. The image is binarized in a way as follows:

I0ðx; yÞ ¼ 0; iðx; yÞ\th

255; otherwise

�
ð1Þ

where th is the mean value of its surrounding neighbor-

hoods. And Fig. 5d shows the segmentation result using

dynamic thresholding. The vein patterns are visibly sepa-

rated from the background but with some noise remained to

be removed.

Then, morphological opening and closing operations

[17] are employed to remove isolated noise inside and

outside the vein patterns. Here, the noise appears as the

black elements in the background and the white elements

embedded in the vein patterns. Noise elimination can be

achieved by morphological filter consisted of opening

operation followed by closing operation. The structural

element of template we adopt for morphological opening

and closing is a circular with radius of 3 pixels. The

background noise is completely eliminated in the erosion

process of opening operation for the reason that the phys-

ical dimensions of noises in background are mostly smallerFig. 2 Histogram of the ROI
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than that of the structural element. The dimensions of noise

embedded in the vein patterns are enlarged because those

noises are dealt with as the internal border of vein patterns.

However, the noise in the vein patterns is reduced or even

totally eliminated in the dilation process. As showed in

Fig. 5e, after opening and closing operation, the noises are

Fig. 3 Enhancement results

using two methods. Left:

histogram equalization; Right:

contrast limited adaptive

histogram equalization

Fig. 4 Filtering results using

two methods. Left: after high-

pass filter; Right: after low-pass

filter

Fig. 5 Results of every

procedure in palm vein

identification (a region of

interest, b CLAHE, c low-pass

filter, d dynamic thresholding,

e morphological opening and

thinning closing operation,

f template skeletonization,

g isolated lines pruning, h short

branches pruning)
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considerably diminished while some tolerable intermittent

ones still exist.

2.4 Image skeletonization

As a matter of fact, image skeletonization is a processing

method of thinning to acquire an image of vein patterns

with a strictly single pixel width. Vein patterns are thinned

in a way that the current pixel surroundings are divested

step by step in eight directions until one single pixel left.

And template operations shown in Table 1 are carried out

in eight directions for skeletonization [18].

Some isolated pixels result from the above procedure.

They can be removed using the template below.

A ¼ 0; B ¼
1 1 1

1 8 1

1 1 1

0
@

1
A; i ¼ �1 ð2Þ

Figure 5f shows that the palm vein image has been

perfectly thinned until the width of contour occupies only

single pixel. However, there are still some isolated lines

and short branches in the image. So, we propose a pruning

algorithm to remove them. The isolated line removal

algorithm is described as follows:

Step1: Pick up all the possible end points including

pseudo-end points

Step2: Climb along the streakline from current point. If

another end point instead of the intersection point

is touched firstly, the streakline is an isolated line

and will be removed

Step3: Repeat step1 and step2 until reach the contour

The short branch pruning algorithm is stated below:

Step1: Pick up all the possible end points including

pseudo-end points

Step2: Climb along the streakline from current point

until intersection point is touched. If the branch

length is under the threshold T, the branch is

thought as a short branch and removed, otherwise

reserved

Step3: Repeat step1 and step2 until reach the contour

The pruning results are shown in Fig. 5g, h. It can be

seen that after the pruning process, the skeletons of the vein

pattern are successfully extracted and the shape of the vein

pattern is well preserved.

2.5 Feature extraction and matching

Inspired by the feature extraction of palm prints [19], we

take Gabor wavelet transform-based method to describe the

texture of palm vein patterns for the sake of translation and

rotation invariance. Gabor wavelet transform has multi-

orientation properties and is optimal for measuring local

spatial frequencies. Besides, it can yield distortion toler-

ance space for pattern recognition tasks [20]. Therefore,

Gabor wavelet decomposition is suitable to extract feature

eigenvectors for palm vein patterns.

The Gabor wavelet transform can be obtained as follows

by using the expanding and rotation of mother function,

giving g(x,y) as the mother wavelet [21].

gmnðx; yÞ ¼ a�mgðx0; y0Þ; a [ 1;m; n 2 int ð3Þ

where

gðx; yÞ ¼ 1

2prxry

exp
�1

2

x2

r2
x

þ y2

r2
y

 ! !
expð2pjWxÞ ð4Þ

x0¼ a�mðx cos hþ y sin hÞ ð5Þ

y0 ¼ a�mð�x sin hþ y cos hÞ ð6Þ

where h = np/k, k is the number of directions and a-m is

scale factor.

We use the wavelet basis above to structure a Gabor

filter. It is worth noting that the skeleton image instead of

the grayscale image is acted as the input image because the

former has much less noises and can represent palm vein

patterns more accurately. Therefore, the skeleton image

I(x, y) obtained in the last step is convoluted with a Gabor

filter gmnðx; yÞ using the m th scale and the n th direction.

Then, m 9 n different Gabor wavelet transformations of

the image I(x, y) are made through the following formula:

Wmnðx; yÞ ¼
XM

i¼1

XN

j¼1

Iðx; yÞgmnðx� i; y� jÞ ð7Þ

where m = 0, 1, 2, 3; n = 0, 1, 2, 3, 4, 5.

The mean lmn and standard deviation rmn of all trans-

formed coefficients are obtained from Eqs. (8, 9),

respectively.

Table 1 Different skeletonization templates

Direction B Direction B

North 1 1 1

0 7 0

�0:5 �1 �0:5

0
@

1
A Northwest 1 1 0

1 7 �1

0 �1 0

0
@

1
A

Northeast 0 1 1

�1 7 1

0 �1 0

0
@

1
A West 1 0 �0:5

1 7 �1

1 0 �0:5

0
@

1
A

South �0:5 �1 �0:5
0 7 0

1 1 1

0
@

1
A Southwest 0 �1 0

1 7 �1

1 1 0

0
@

1
A

Southeast 0 �1 0

�1 7 1

0 1 1

0
@

1
A East �0:5 0 1

�1 7 1

�0:5 0 1

0
@

1
A
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umn ¼
1

M � N

XM

i¼1

XN

j¼1

Wmnði; jÞj j ð8Þ

rmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � N

XM

i¼1

XN

j¼1

ðWmnði; jÞ � umnÞ2
vuut ð9Þ

Then, a 48 dimension eigenvector T is created by two

basic elements lmn and rmn. It is described as following:

Y ¼ ½T0; T1; � � � Ti; � � � T46; T47� ð10Þ

Where T2k = lmn, T2k?1=rmn.

As described in [22], the element order should be based

on the dominant direction and a simple circular shift on the

feature eigenvector is employed to solve the rotation var-

iance problem. Here, the total energy for each orientation is

calculated. And the orientation with the highest total

energy is called the dominant orientation. The feature

elements in dominant orientation are moved and selected as

the first element in the feature vector. Then, the other

elements are circularly shifted.

Finally, we adopt correlation coefficient [19] to make

the classification decision.

Rs1s2
¼ ls1s2

� ls1s2

ls1s1
� ls2s2

ð11Þ

where

ls1s2
¼
Xn

i¼1

ðs1 � �s1Þðs2 � �s2Þ ð12Þ

ls1s1
¼
Xn

i¼1

ðs1 � �s1Þ2 ð13Þ

ls2s2
¼
Xn

i¼1

ðs2 � �s2Þ2 ð14Þ

If Rs1s2
[ Th, then the two palm vein patterns belong to the

same person. If Rs1s2
� Tl, they are not the same and

rejection is decided.

3 Experimental results and discussion

In our experiments, a total number of 683 palm vein

images were collected from 101 persons over a period of

3 months to evaluate our proposed method. Among them,

the testing database and the training database are mutual

exclusive, with 505 palm vein images used as training

samples and the rest 178 images for testing. Also, it should

be noted that the 505 training images are made up of palm

vein images from the 101 persons with 5 images for each

subject. The size of each ROI image was 64 9 64 resolu-

tion with 256 gray levels. To evaluate the effectiveness of

the proposed method, the experiments were implemented

in two modes: identification and verification. In the iden-

tification mode, the correct recognition rate (CRR) was

adopted to evaluate the effectiveness of our method. In the

verification mode, the receiver operating characteristic

(ROC) curve was used to depict the relationship between

the false rejection rate (FRR) and the false acceptance rate

(FAR).

This section uses three experiments to demonstrate the

performance of the proposed method for palm vein rec-

ognition. The first experiment shows the validity of every

step of preprocessing to enhance the structure of palm vein

patterns and suppress unwanted noises and disturbances

effectively. The second one analyzes the relationship

between the recognition accuracy and different palm vein

pattern representations: skeleton image or grayscale one.

Finally, the third one gives the comparisons and discus-

sions between our method and the three existing methods.

The following subsections will present the experiments and

results in detail.

3.1 Performance evaluation of the proposed method

Owing to the shape uniqueness of vein patterns, we pro-

posed a new method to recognize vein patterns, which

contains ROI extraction; image enhancement including

CLAHE and 2-D Gaussian low-pass filtering; image seg-

mentation with dynamic thresholding and morphological

opening and closing operation; image skeletonization using

template thinning followed by isolated lines and short

branches elimination and vein pattern extraction and

matching based on Gabor wavelet features.

Figure 5 is an example that we give every step to show

the validity of our measures. In this figure, a is the original

image, b is an enhancement of a with CLAHE and c is a

filtered image of b by using a 2D Gaussian low-pass filter.

It can be seen that the contrast in b between palm veins and

background has been enhanced obviously while the details

of the image are retained, and the vein patterns in c become

smoother with their edges while the palm prints disappear

as the high-frequency signals. Then, we make use of

dynamic thresholding to segment c and accomplish the

image shown in d in spite of brightness fluctuations in c.

And e is d with noises removed and edges smoothed by

morphological opening and closing operator. Template

operation is employed to thin e and get a preferable result

shown in f. g and h demonstrate the vein patterns after

isolate lines and short branches have been eliminated,

respectively.

In the second test, we evaluate the performance using

Gabor wavelet features of palm vein patterns extracted

from two different kinds of images: skeleton and grayscale.

A total of 178 comparisons are performed on the basis of
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all the testing images. The feature vector of each kind of

testing image is matched against their stored template,

respectively. The ROC curves, which plots the FAR against

FRR, are chosen to analyze the performance of the

experimental results. Figure 6 illustrates the FAR and FRR

distributions of the two kinds of images. It displays that the

whole curve of the skeleton image is below that of the

grayscale one. That is, the Gabor wavelet features from

skeleton images are more suitable than those from gray-

scale ones in our database. This may be generated from two

facts. Firstly, the palm vein patterns are much more obvi-

ous in the skeleton image than in the grayscale image.

Secondly, the grayscale image may suffer from the

remaining noises such as palm prints or light sports.

3.2 Comparison and discussion

The experimental results in Sect. 3.1 demonstrate that the

proposed method is effective for palm vein pattern recog-

nition in our database. And the methods proposed in [9, 11,

12] are well known for palm vein recognition. Hence, we

compare our method with these three methods in order to

further prove our methods’ effectiveness. For the sake of

fairness, together with our proposed approach, all these

methods are tested by using our own database with 178

testing samples from 101 persons. It also should be noted

that our experimental results of each algorithm are con-

sistent with their published results, which to some extent

shows our correct implementations of other methods.

Table 2 and Fig. 7 show the comparisons of the experi-

mental results in detail.

The four different methods are all quite effective as their

successful rates (CRR) shown in Table 2 exceed 95 %. As

for the proposed method, there are 178 vein patterns for

testing in our database and we achieved 176 successful

recognitions and two failures. One of the failures is an

instance of incorrectly identifying an unauthorized person,

and the other is an occurrence of failing to identify an

authorized person. The ROC curves of the four methods on

our own database are displayed in Fig. 7. They demon-

strate that our method is slightly better than the other three

popular methods. The accuracy of the geometric-based

method [9] may be affected by information loss because

the features of palm vein pattern are only represented by

the geometric information of minutiae points such as

branching points and ending points. In the method based on

Laplacianpalm [12], palm veins are fused with palm prints

for the representation of palm features. However, palm

prints are not stable enough for they may change as a result

of wear, injury, aging and different health conditions.

While the eigenvein method [11] preserves the global

structure of the palm vein image, the local textured infor-

mation is lost. In addition, since the eigenveins obtained by

2DPCA are sensitive to rotation variations which are quite

common and inevitable in the stage of data acquisition, the

accuracy may be influenced. From Table 2 and Fig. 7, we

Fig. 6 ROC curves at two kinds of images: skeleton image (red) and

grayscale image (blue)

Table 2 Performance comparison of four different methods on our

database

Methods Right

match

Wrong

match

Rejection Successful

rate (%)

Minutiae feature 174 2 2 97.75

Laplacianpalm 172 4 2 96.63

Eigenvein 175 2 1 98.31

Proposed 176 1 1 98.88

Fig. 7 ROC curves of four methods
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can see that the proposed method obtain slightly better

performance than other methods. It is the result of the

following three reasons. Firstly, on the preprocessing stage,

a series of well-known techniques has been applied to

enhance the contrast between palm veins and backgrounds

and eliminate negative influences produced by unwanted

noises and disturbances such as palm prints, light spots and

so on. Secondly, the Gabor wavelet features can effectively

analyze variations in the intensity, which can reflect most

of the random shape information of the palm vein and thus

achieve a slightly higher performance. Meanwhile, due to

the translation and rotation invariance of Gabor wavelet

features, our method can accurately align the rotation and

shift variations introduced in data acquisition to some

extent.

The proposed method is implemented in Visual C??. It

runs on the computing environment of 2.2 GHz PC with

2 GB RAM. The average computation time costs for image

preprocessing, feature extraction and matching are 76,

248 ms and 15 ls, respectively. The total computation

time is about 324 ms, which can meet the real-time

requirements.

4 Conclusions and future work

The framework of an automated thermal palm vein pattern

recognition system was developed in this paper. Its oper-

ation can be divided into five image processing phases:

image acquisition, enhancement, segmentation, skeleton-

ization, feature extraction and matching. The proposed

method achieves good performance proved by the experi-

ments using 683 palm vein images. It can overcome the

problem of rotation and shift essentially owing to the

Gabor wavelet’s advantages. In particular, this method has

many advantages over the other methods. Firstly, our CCD

is a very cheap one which considerably cuts the cost and

thus is touched with preferable completion. Secondly,

compared with palm-dorsa vein patterns for verification,

the palm vein patterns are more difficult to be revealed due

to thicker skins with palm prints as noises. Finally, the

method is relatively simple and practical.

Our future work will focus on two aspects. First, the

global and local features of the vein patterns are supposed

to be effectively exploited by combining Gabor wavelet

features with the space pyramid technique. Also, the speed

of the system could be improved when a fast Gabor

transform is available or the transform is precomputed.
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