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Generalization of CNNs on
Relational Reasoning with Bar Charts

Zhenxing Cui, Lu Chen, Yunhai Wang, Daniel Haehn, Yong Wang, and Hanspeter Pfister IEEE Fellow

Abstract—This paper presents a systematic study of the gener-
alization of convolutional neural networks (CNNs) and humans
on relational reasoning tasks with bar charts. We first revisit
previous experiments on graphical perception and update the
benchmark performance of CNNs. We then test the generalization
performance of CNNs on a classic relational reasoning task:
estimating bar length ratios in a bar chart, by progressively
perturbing the standard visualizations. We further conduct a
user study to compare the performance of CNNs and humans.
Our results show that CNNs outperform humans only when the
training and test data have the same visual encodings. Otherwise,
they may perform worse. We also find that CNNs are sensitive
to perturbations in various visual encodings, regardless of their
relevance to the target bars. Yet, humans are mainly influenced by
bar lengths. Our study suggests that robust relational reasoning
with visualizations is challenging for CNNs. Improving CNNs’
generalization performance may require training them to better
recognize task-related visual properties.

Index Terms—Convolutional Neural Networks, Generalization
Evaluation, Graphical Perception, Relational Reasioning.

I. INTRODUCTION

DEEP neural networks, especially convolutional neural
networks (CNNs), are increasingly being adopted in the

visualization community for many tasks such as visual ques-
tion answering [33], [34], automatic visualization design [3],
and chart captioning [35], [44]. Despite their widespread use,
the crucial question of how well these models generalize
to previously unseen visualizations remains less explored.
Understanding and enhancing this generalization ability is
crucial for the real-world deployment of CNNs.

Graphical perception [5] refers to the human ability to
decode visually encoded quantities in visualizations. It plays a
foundational role in understanding the relations between visual
elements, such as the bar length ratios in bar charts. Seminal
work by Cleveland and McGill [5], along with subsequent
studies [26], [55] highlighted human proficiency with aligned
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bars over stacked configurations. Recent findings by Haehn et
al. [20] indicate that CNNs do not match human accuracy in
interpreting bar charts, raising questions about the discrepancy
in graphical perception between CNNs and humans.

Our research aims to address two primary shortcomings
of the current evaluation of CNNs in graphical perception.
First, a common limitation of existing studies is their reliance
on oversimplified stimuli that fail to capture the complexity
of standard visualizations. For example, the stimuli used by
Haehn et al. [20] were all black-and-white images devoid of
axes, legends, or titles, which are essential chart components
according to the Grammar of Graphics [59]. We address this
limitation by evaluating the performance of CNNs and humans
using more realistic bar charts that better reflect standard
visualization design.

Furthermore, although CNNs have demonstrated remarkable
performance in object recognition, their robustness to visual
changes is limited, as highlighted by Geirhos et al. [15].
We hypothesize this limited robustness extends to relational
reasoning tasks, particularly in the context of commonly
used bar charts, which have not been thoroughly investigated.
Our study seeks to systematically evaluate the generalization
capabilities of CNNs in visual relational reasoning, focusing
on their adaptability to novel charts with variations in key
visualization parameters such as stroke width, title position,
and background color, which reflect a wide range of design
choices driven by individual preferences.

In this paper, we present a comprehensive study of the
graphical perception capabilities of CNNs and humans. We
focus on the ratio estimation task in bar charts and aim to
answer the following research questions:

(i) How well do CNNs perform and generalize on standard
visualizations that include all necessary components spec-
ified by a visualization grammar?

(ii) How robust are CNNs to perturbations of different visual
properties in standard visualizations?

(iii) What are the major differences between CNNs and hu-
mans in visual relational reasoning?

Our answers to these questions will help us better understand
the potential generalization ability of CNNs and humans and
provide guidelines for training and designing robust CNNs for
relational reasoning tasks involving data visualizations.

We first revisit the experiments conducted by Haehn et
al. [20] and find that a CNN model trained with the identified
(near) optimal configurations can estimate bar length ratios
more accurately than humans when the training and test data
have similar visual encodings. Moreover, this CNN model
can also evaluate bar charts with an expanded parametric
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space, such as an increased number of possible ratios in ratio
estimation tasks.

Next, we conduct a structured generalization analysis of
CNNs and humans on standard visualizations with a wider
range of visual appearances, synthesized using Vega-Lite [52],
a high-level visualization grammar. We evaluate the perfor-
mance of CNNs on visualizations without and with progres-
sive perturbations of various visual parameters, such as title
position, background color, bar width, and bar length.

We also conduct a user study to measure human perfor-
mance under the same conditions. The results show that: (i)
CNNs perform better than humans in relational reasoning on
bar charts when the testing data mirrors the visual encodings
of the training data. However, their performance can quickly
decline below human levels on charts that incorporate pertur-
bations in certain visual encodings; and (ii) CNNs exhibit less
robustness to perturbations of various visual encodings, even
those unrelated to the target visual marks. In contrast, humans
are mainly influenced by the lengths of the bars in the chart.

Our study suggests that humans and CNNs may use dif-
ferent reasoning processes, with humans primarily focusing
on specific parameters of the target bars while ignoring
other irrelevant chart details. To understand why CNNs fail
to generalize to perturbed visualizations, we visualize the
important regions used by CNNs for estimating the ratios using
gradient weighted class activation mapping (Grad-CAM) [53]
and find that the regions of target bars are rarely used as
the key evidence by CNNs trained on this task. However, by
providing enough guidance of the target regions, their ability to
generalize to perturbed visualizations can be improved. Even
so, CNNs still do not use the lengths of the bars as their sole
basis for estimating ratios.

In summary, this work makes several novel contributions.
We systematically study the generalization performance of
humans and CNNs on a large number of standard visualiza-
tions synthesized according to the grammar of graphics. We
demonstrate that appropriately tuned hyperparameters can en-
able most CNN models to meet or exceed human performance
on relational reasoning tasks when the training and test data
have similar visual encodings. Finally, we show that providing
ground-truth target region information can improve the gener-
alization performance of CNNs on graphical perception tasks.
Data, source code, study materials and additional analyses are
included in our supplemental material and can be found at
https://github.com/Ideas-Laboratory/Graphical-Perception.

II. RELATED WORK

A. Graphical Perception

The concept of graphical perception was introduced by
Cleveland and McGill to describe the visual decoding of
information encoded in graphs [5], [6]. By conducting a
series of elementary perceptual experiments on different visual
encodings, Cleveland and McGill evaluated the perceptual
difficulty of different visual encodings for humans. Their work
was later replicated by a number of follow-up studies, such as
Heer and Bostock’s evaluation of human graphical perception
on Mechanical Turk [26] and Harrison et al.’s reproduction

of the Cleveland-McGill experiments with a focus on the
influence of affective priming [23]. These studies have estab-
lished a foundation for understanding human capabilities in
interpreting information from visualizations. Building on this
body of knowledge, Zeng et al. [64] leverage insights from
graphical perception to guide visualization recommendation.

Recently, researchers have focused on the building blocks of
visualizations, such as position, length, and angle estimation,
and have explored how well neural networks can perform these
elementary perceptual tasks. Haehn et al. [20] investigated
whether off-the-shelf CNNs can predict human responses to
graphical perception building blocks by replicating Cleveland
and McGill’s experiments [5] (see Section III). Haleem et
al. [21] explored the potential of using a handcrafted CNN
to estimate the readability of graph visualizations and found
that machine graphical perception has promise for graph
visualizations. Giovannangeli et al. [16] found that current
CNNs are able to replicate previously published studies of
human graph perception while still exhibiting generalization
limitations.

However, all of these studies evaluate the generalization
ability of CNNs using data generated from highly controlled
settings, which are far from real-world scenarios. We argue
that the evaluation should be done with standard visualizations
created according to the grammar of graphics [59]. Otherwise,
the results may not be representative of meaningful general-
ization, and such controlled settings may limit the usefulness
of CNNs. In addition, we aim to investigate the robustness
of CNNs against varying visual properties and compare them
with human performance.

B. CNNs for Visualization Generation and Analysis

Inspired by the great success of CNNs on general computer
vision and graphics tasks, there has been an increasing interest
in applying them to data visualizations. The studies can
be categorized into two groups: visualization generation and
visualization analysis.

In visualization generation, CNNs are employed to ease the
creation of visualizations and encode additional information
into visualizations [12], [65]. VizML [30] utilizes a three-layer
CNN to automatically recommend a suitable visual encoding
of standard charts, including axis specifications and chart
types. Chen et al. [3] leverage the ResNeXt architecture [60]
to decompose timeline infographics and further construct
infographics with a similar design style for new input data.

Prior studies on visualization analysis focus on training
CNNs to understand data visualizations. A representative task
is chart Question Answering (QA) [34], [46]. Since simple
CNNs have difficulties solving the visual relation reasoning
problem, Kafle et al. [33] extend Stacked Attention Net-
works [62] with dynamic encoding to enhance the network’s
understanding of bar charts. VisQA [36] adopts a template-
based approach to generate explanations along with automatic
question answering. CNNs have also been applied for vari-
ous other visualization analysis tasks, such as visualization
retrieval [50], outlier identification [17], [18], design pattern
analysis [63], and chart ensemble exploration [8], [66].

https://github.com/Ideas-Laboratory/Graphical-Perception
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All the above techniques intrinsically rely on the graphical
perception capability of CNNs. In this work, we systematically
evaluate how different CNN architectures perform in graphical
perception tasks while providing implications for training and
designing more powerful CNN models for visualization tasks.

C. CNN Generalization for Visualizations

CNNs have shown remarkable generalization abilities on
data in which training and test data have similar distributions,
outperforming humans in various tasks like image classifi-
cation and object recognition. Despite these successes, their
generalization performance degrades significantly when faced
with out-of-distribution (OOD) test data [14], [15], [27], [28].

Only a few studies have been conducted regarding the OOD
performance of CNNs for visualization techniques with small
perturbations in the input. Lopes and Brodlie [42] evaluated
the robustness of isosurfaces by observing how the continuity
varies with respect to changes in the data or isosurface level.
Correll et al. [7] show that a small perturbation of visual
parameters might obscure the important data patterns. Wang
et al. [58] examined the robustness of scagnostic measures
by conducting a set of empirical studies. Yang et al. [61]
revealed that VGG19 excels in predicting human correlation
judgments on scatterplots and exhibits generalization ability
across different designs.

In this work, we follow the above approach to evaluate the
generalization performance of CNNs and humans on relational
reasoning tasks involving bar charts. To the best of our
knowledge, we construct the first generalization benchmark
dataset for graphical perception tasks, which consists of a large
set of synthesized standard visualizations and their element-
wise perturbed counterparts with exposed and programmable
parameters. We analyze the effect of perturbation operations on
CNNs and compare the results with human judgments under
the same conditions.

III. BACKGROUND

In this section, we briefly review two fundamental exper-
iments that evaluate the graphical perception of humans and
CNNs. We then revisit their hypotheses, experimental setups,
and derived conclusions and report three major limitations that
motivated our work.

A. Cleveland and McGill’s Experiments

To study how humans decode graphs, Cleveland and
McGill [5] summarized ten elementary graphical encodings
from various commonly-used plots and charts: position along
a common scale, positions along non-aligned scales, length,
direction, angle, area, volume, curvature, shading, and color
saturation. To evaluate the effectiveness of these visual en-
codings, they conducted two experiments using bar and pie
charts. Here, we focus on the position-length experiment,
which estimates bar length ratios.

Position-length experiment. Subjects were presented with a
set of grouped and stacked bar charts with five different types,
where two bars or bar segments were marked with black dots

on each chart. The task was to estimate the ratio between the
two marked bars, i.e., the percentage of the smaller value to
the larger value. Subjects could make judgments based on the
position along a common scale or the length of the bars.

Measurements. The perception accuracy was measured by the
midmeans of log absolute errors (MLAE) for each experimen-
tal unit in two experiments:

MLAE(θ̂) =
2
n ∑

0.75·n
i=0.25·n+1 log2(|θ̂i −θi|+0.125), (1)

where θ̂ = {θ̂1, · · · , θ̂n} is a set of ordered estimations, θ̂i
is a predicted percent given by a subject, and θi is the
corresponding true percent.

Findings. Cleveland and McGill found that adjacent bars
score the best, closely followed by the separated bars and
horizontally aligned stacked bars, while unaligned stacked bars
and vertically aligned bars are the worst. The quantitative
results show that the position judgments were 1.4 to 2.5 times
more accurate than length and 1.96 times more accurate than
angle. The authors attributed the differences to different visual
estimation strategies in humans, where aligned bars involve the
judgment of positions along a common scale and unaligned
bars involve length judgments.

B. Haehn et al.’s Evaluation of CNNs

To investigate if CNNs meet or outperform humans on
graphical perception, Haehn et al. [20] conducted five per-
ceptual experiments using four off-the-shelf neural networks:
a multilayer perceptron (MLP), LeNet [39], VGG19 [54],
and Xception [4], with increasing sophistication in the archi-
tectures. They reproduced Cleveland and McGill’s position-
length and position-angle experiments and added three new
experiments: (i) Cleveland and McGill’s elementary perceptual
tasks to study if CNNs can extract quantities from basic visual
marks, (ii) bars and framed rectangles experiment to test if
visual cues can help CNNs perform more accurately, and
(iii) Weber’s law point cloud experiment to check whether
CNNs and humans have a similar mechanism on perceiving
differences. In this work, we mainly focus on the position-
length experiment.

Measurements. In all experiments, Haehn et al. simplified
the charts from Cleveland and McGill’s study by removing
the axes and text. They presented the CNNs with sketch-style
black-and-white images and tested their predictions on charts
with the same parameters. Then they compared the results
with human performance data collected by themselves using
the same MLAE metric as Cleveland and McGill.

Findings. They found that CNNs performed worse than hu-
mans on the position-length experiment and had similar ac-
curacy across different bar chart designs. Overall, CNNs may
exceed or perform similarly to humans for some experiments
but cannot complete tasks such as the ones in the position-
length experiment, which requires estimating ratios between
the lengths of the bars of interest. Therefore, Haehn et al.
concluded that “CNNs are not currently a good model for
human graphical perception.”
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C. Study Limitations

We identified the following three limitations of these stud-
ies:
L.1 Haehn et al. explored four network architectures but

did not study the influence of hyper-parameters such as
different optimization solvers and learning rates. They
also did not investigate more advanced CNN model
architectures such as ResNet [24]).

L.2 The charts that were used in the above studies are
oversimplified. For example, they do not contain many
indispensable elements, e.g., axes, labels, or titles. The
graphical perception performance on these charts may
not reflect the actual capability of CNNs for standard
visualizations, let alone the ones used in real applications.

L.3 Although humans are known to generalize effectively
on common visual relational reasoning tasks, it remains
unclear how CNNs perform when there is a discrepancy
between the test and training data, as Haehn et al. only
evaluated the generalization ability of CNNs when the test
visualizations had similar visual encodings as the training
ones.

IV. REVISITING HAEHN ET AL.’S EXPERIMENT

In this section, we replicate Haehn et al.’s evaluation of
graphical perception with CNNs to address limitation L.1 and
then, while still using the black-and-white chart images, we
gradually expand the parameter space for data generation of
perceptual tasks in four steps, resulting in an increased task
complexity. We measure the performance of each step to see
if CNNs can still accomplish the ratio estimation task.

A. Replicating Haehn et al.’s Experiment

Following Cleveland and McGill’s task design and Haehn
et al.’s experimental design, we reproduce the position-length
experiments using different network architectures and hyper-
parameters.

In Cleveland and McGill’s position-length experiment, the
authors used controlled parameters for the generation of the
stimuli. The length values involved in subjects’ estimations
(the marked target bars) were set as 10 real numbers equally
spaced on the log scale:

si = 101+(i−1)/12, i = 1, · · · ,10. (2)

They also fixed the indices of the target bars, for example,
the second and third ones in the left group of the bar charts.
Furthermore, the pixel dots (a one-pixel dot for each bar) were
all located in a fixed position inside the target bars.

Haehn et al. [20] used the same parameters when conducting
the experiments with CNNs. In addition, they randomly sam-
pled length values of non-target bars from an interval [10,93],
guaranteeing that all the local patterns in the image could be
detected by the largest convolutional filter. They synthesized
100,000 100×100 sized images containing sketch-styled bars
in black and white. To avoid that the CNN models simply
memorize the data, they added 5% normally-distributed noise
with mean = 0 and variance = 1 to each image.

TABLE I
PERFORMANCE OF VGG19 AND RESNET152 WITH DIFFERENT

HYPER-PARAMETERS IN TYPE 1 OF THE POSITION-LENGTH EXPERIMENT,
WHERE THE CELL WITH ✗ INDICATES THAT THE CORRESPONDING

PARAMETER IS INVALID, AND CI INDICATES CONFIDENCE INTERVAL.
NOTE THAT THE HUMAN ESTIMATED MLAE VALUE IN THIS TASK

REPORTED BY PREVIOUS STUDIES [20] IS 1.4.

Network Optimizer
Learning

rate Momentum
Weight
decay MLAE CI

VGG19

SGDM
High

Classic ✗ 1.43 0.05
Nesterov ✗ 1.10 0.22

Low
Classic ✗ 1.41 0.15

Nesterov ✗ 1.04 0.27

AdamW
High

✗ High -2.32 0.11
✗ Low -2.41 0.10

Low
✗ High -1.89 0.35
✗ Low -1.71 0.25

ResNet152

SGDM
High

Classic ✗ -0.61 0.24
Nesterov ✗ -0.60 0.21

Low
Classic ✗ 0.72 0.24

Nesterov ✗ 0.70 0.25

AdamW
High

✗ High -2.76 0.10
✗ Low -2.42 0.17

Low
✗ High -2.71 0.10
✗ Low -2.53 0.24

CNN Architectures. The network architecture is crucial for
the performance of CNNs in various applications. Haehn et al.
used VGG [54], a simple and effective CNN architecture that
supports up to 19 layers. Since their result shows that VGG19
achieves the best graphical perception performance among
other networks, we use VGG19 as one of the baselines in
our experiments. To investigate if a better performance can be
achieved by more recent CNNs, we include a ResNet152 [24]
in our experiments, which is 8 times larger than VGG19 and
deeper than the Xception126 [4] network also used by [20].
We also test multi-layer perceptron (MLP), AlexNet [38],
LeNet [39], DenseNet [31], EfficientNet [56], and a Relation
Network [51].

Optimization Solvers. Optimizers also play an important role
in the training process of CNNs and can have a big influence
on their performance. Stochastic gradient descent (SGD) is a
classic iterative method for optimizing deep neural networks.
Haehn et al. use SGD with momentum (SGDM) [48] to
improve the classic SGD with the advantages of faster con-
vergence and fewer oscillations during training. More recently,
there are more powerful and efficient optimization solvers for
training deep neural networks. Adaptive moment estimation
(Adam) [37] is a representative example, which achieves
better performance than SGDM. Loshchilov and Hutter [43]
proposed an improved version of Adam called AdamW, which
shows better training curves and generalization ability. In this
work, we explore the different performances of SGDM and
AdamW.

Training Objective. Given the objective of predicting continu-
ous bar length ratios, we train regression models as in previous
work [20]. Although MLAE (Equation 1) is suitable for
perception accuracy, using it as a log-scale loss during network
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training leads to biased gradients for different prediction error
scales. Thus, similar to Haehn et al. [20], we train our models
using the mean squared error (MSE):

MSE(θ̂) =
1
n ∑

n
i=1

(
θ̂i −θi

)2
.

Following the suggestion of Haehn et al., we normalize both
θ̂i and θi to the range [0,1]. When MLAE is -3, MSE is around
0; when MLAE is 0, MSE is around 0.76. A negative MLAE
score of around -3 indicates high estimation accuracy, and a
high positive score indicates poor accuracy.

Hyper-Parameters Tuning. Another issue for achieving op-
timal model performance is the selection of hyper-parameters
during CNN training, such as learning rate, momentum type,
weight decay, batch size, and epoch number. We follow the
suggestions by recent guidelines [10], [19], [29] for tuning
hyperparameters. Table I shows our chosen values for learning
rate and a parameter for each of the two main optimizers:
momentum type for SGDM and weight decay for AdamW. To
find proper values for learning rate and weight decay, we adopt
a coarse-to-fine strategy that first searches for coarse ranges of
hyperparameter values using a small number (100) of epochs
and a small training set (1/3 of the entire dataset) and gradually
narrows the range down through binary search. To alleviate
falling into a local minimum, we search for the optimal values
from two different ranges: one with large values and the other
using small values. Hence, we set two learning rates for each
combination of network architectures and optimizers to inspect
if higher or lower values contribute to better results.

For SGDM, we test two commonly used types of mo-
mentum, classic and Nesterov momentum. For AdamW, we
examine the effect of weight decay and set two values as high
and low, respectively. Based on these parameters, we follow
the previous guidelines that train the networks for 500 epochs
with a mini-batch size of 16 and 32 for each task and terminate
early if the validation loss stays unchanged for ten epochs.

Since Haehn et al. [20] reported poor performance of
CNN models that were pre-trained on ImageNet [38], we
do not perform any pre-training and train the models from
scratch. For all the experiments, we employed 5-fold cross-
validation for each model. We split the dataset into five equal-
sized subsets and used four subsets for training and one for
validation iteratively. This process was repeated five times,
ensuring each subset was selected as the validation set exactly
once. Our models are implemented in Pytorch and trained on
an NVIDIA RTX 3090 GPU with mini-batch size 16 for 500
epochs. All networks are initialized with random parameters.

Results. All models outperform VGG19 (MLAE=3.51) as
reported by [20], even the simple MLP (MLAE=0.35). Given
this unexpected result, we first reviewed the training process
by comparing the training and validation loss curves [2] to rule
out issues such as overfitting. The curves are provided in the
supplemental material, where the validation loss consistently
decreased alongside the training loss, confirming that the
training process was conducted properly.

Across the eight tested network architectures, VGG19 and
ResNet152 perform significantly better than other networks as
shown in Fig. 1. To analyze the influence of hyper-parameters,

-3 -2 -1 0 1 2 3 4

MLAE

VGG19

ResNet152

AlexNet

DenseNet

EfficientNet

MLP

LeNet

RelationNet

-2.37

-2.21

0.11

0.35

-2.37

-2.12

-2.76

-2.41 SGDM+Low LR +Nesterov M

SGDM+High LR + Classic M

AdamW+High LR + Low WD

AdamW+Low LR + High WD

SGDM+High LR +Nesterov M

AdamW+High LR + High WD

SGDM+Low LR + Classic M

AdamW+Low LR + Low WD

Fig. 1. Performance comparison of eight network architectures trained with
eight sets of hyper-parameters in type 1 of the position-length experiment.
The best trained model for each kind of network is highlighted and labeled
with the corresponding MLAE value, while others are shaded.

we report the detailed results of these two networks for
the position-length type-1 experiments in Table I, as similar
patterns are observed in the remaining models Comprehensive
results are provided in the supplementary material. Haehn et
al. [20] reported the lowest MLAE=3.51 achieved by VGG19
compared to humans (MLAE=1.4) for this task, which led
to their conclusion that CNNs cannot complete this task.
In contrast, we find that VGG19 and ResNet152 trained
with carefully selected hyper-parameters exceed human
performance, as shown in Table I.

Examining the influence of each factor, we find that AdamW
enables VGG19 and ResNet152 to produce the best results,
with a higher learning rate improving network performance in
most cases. In contrast, the influence of momentum and weight
decay are both unclear as the MLAE grows higher or lower for
different conditions. The batch size has a weak influence on
model training since smaller (16) and bigger (32) sizes result
in similar MLAEs. Throughout all combinations of networks
and hyper-parameters, ResNet152 trained with AdamW with
a high learning rate and weight decay performs best for the
position-length experiments. In particular, the MLAE value
for the experiment is −2.76, which is highly accurate and
much better than average human performance (1.4). Therefore,
we perform further evaluations using this configuration of
ResNet152 with AdamW.

B. Expanding the Data Generation Parameter Space

In this experiment, we use the same black-and-white chart
images as in Section IV-A, but gradually expand the parameter
space for data generation in three steps, resulting in increased
task complexity. We measure the performance of each step.

Experimental Setup. As shown in Fig. 2, the appearance of
the bars to be estimated is mainly decided by two factors: the
number of possible bar heights, and indices of the target bars.
Here, we investigate how CNNs perform when expanding the
value range of each factor using the following steps:

(i) We expand the range of target bar lengths from 10 to 20
fixed numbers by modifying Equation 2:

s
′
i = 101+(i−1)/24, i = 1, · · · ,20.
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(ii) We further expand the length range of all bars to random
numbers within the interval [10,93]. This range is chosen
as in [20] to ensure that all content in a 100×100 image
can be seen by large convolutional filters. This also allows
for testing on out-of-distribution lengths in the future (see
Section V-B).

(iii) Instead of fixing the target bars (indicated by black dots)
to the second and third ones, we define them as two
arbitrary adjacent bars ( j, j + 1), where j ranges from
1 to 9.

The dataset generated (consisting of 60,000 samples for
training, 20,000 for validation, and 20,000 for testing) in
each step is fed into the network for model training and
evaluation. Later, we test the model with unseen stimuli. We
use ResNet152 with the AdamW optimizer and keep all the
other hyper-parameter settings the same as in Section IV-A.

Results. The test MLAEs of the CNN models on our expanded
parameter space are shown in Fig. 2(d). A reasonable hypoth-
esis is that the model performance will drop as the datasets
and tasks become more complicated. This is confirmed by the
general trend of our experimental results. Despite a perfor-
mance decrease, the MLAE value of our CNN models is -2.30,
already reaching an extremely high estimation accuracy that is
significantly better than that of humans (average MLAE=1.4).
Hence, CNNs perform well in the expanded data generation
parameter space and achieve comparable performance as
in the previously highly controlled settings. However, even
in such a setting, the stimuli are still far simpler with no
essential graphical elements adjunct to the visualizations like
axes and texts or using color.

(a) 20 fixed length values (b) Random length values

(c) Random bar indices (d) Computational results 

Fig. 2. Sample images of expanding the parametric space in three steps: (a)
from 10 fixed length values to 20 fixed values, (b) random length values, and
(c) from fixed indices of target bars to random indices; (d) control settings
and MLAE values and CIs of three extended steps in (a-c).

V. GENERALIZATION OF CNNS AND HUMANS ON
STANDARD VISUALIZATIONS

In this section, we explore how well CNNs and humans
perform on standard visualizations. To address L.2 and L.3,
we first create GRAPE (GRAphical PErception tasks), a
synthetic dataset that contains 766,000 (500,000 for training
and 266,000 for testing) images of standard visualizations
generated by Vega-Lite [52]. Next, we train a CNN model
for each task and test how well they perform on unseen
visualizations. We also conduct a user study to measure human
performance.

Since Haehn et al. [20] only evaluate CNNs with test data
that has similar visual encodings as the training data, their
results do not allow to reveal how well CNNs handle charts
with slight variations in visual encodings (L.3). Hence, we
create two kinds of test stimuli based on GRAPE: one sharing
similar visual encodings with the training data, and the other
with variations in the visual encodings. We refer to these two
settings as independent and identically distributed (IID) and
out-of-distribution (OOD) test data, respectively [13], [15].

A. GRAPE Dataset

In contrast to the simple black-and-white charts in the
previous studies [5], [20], the charts used in our next set of
experiments are standard visualizations that were generated
by Vega-Lite [52]. Here, we describe the construction of our
dataset of standard visualizations, GRAPE, and the methodol-
ogy we followed to create training and test stimuli for CNNs.

Parametric Space. Vega-Lite uses the grammar of graph-
ics [59] with a set of parameters that control the visual appear-
ances of independent chart elements. We programmatically
vary commonly used parameters for bar charts, such as bar
width, stroke width, title properties (position, font, and size),
and colors (background color, bar color, and stroke color).
Our parametric model also supports other parameters like tick
number, axis label, center position, etc.

Since color is an essential component of standard visu-
alizations, we design a color mapping scheme that satisfies
two requirements: adjacent colors have visually noticeable
differences, and all colors are nameable to facilitate commu-
nication. To do so, we take the 140 named colors from D3 [1],
order them by their perceived luminance, and divide them into
four non-overlapping color sets. We assign the brightest (set
1) and darkest (set 4) colors to the background and stroke,
respectively. Set 3 is used for the bar fill color, while set 2
is used to generate completely unseen color distributions for
testing our CNN models. To ensure sufficient color discrim-
inability, we make sure that the luminance difference between
the colors of any pair of visual elements (e.g., bars, strokes,
and background) in one chart is at least 5 in CIE LAB color
space.

With the above parameter settings, we generate a set of
chart images of size 150 × 150 pixels. The reason that we
increased the image size, compared to the 100× 100 pixels
used by Haehn et al. [20], is to provide enough space to place
the title, axis, and labels. Fig. 3 shows the resulting five types
of bar charts for the position-length experiments. Like Haehn
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Fig. 3. Our five types of stimuli used in the position-length experiment, where each bar chart includes colorized bars, axes, tick labels, and titles.

et al., we add 5% random noise (normally distributed between
-0.025 to 0.025) to each pixel to prevent the networks from
memorizing each image.

Training Stimuli. We increase the task complexity of the
position-length experiment setting of Haehn et al. [20] by
adding two aspects. (i) One extension is to expand the two
parameters length range and indices of target bars defined
in Section IV-B. As shown in the last row of Fig. 2(d), the
value range of each bar is extended to [10,93]. For stacked
bar charts, we further normalize the total values within each
stack. For the indices of the target bars, we follow Cleveland
and McGill, who used any two adjacent bars for types 1 and
5, random bars from different groups/stacks for types 3 and 4,
and the bottom two bar segments for type 2 (Fig. 3). (ii) The
other extension is to sample the ten bar values from more data
distributions with different patterns (e.g., long tail, peak, and
sine wave) in addition to the random distribution. All stimuli
are colored instead of the previous over-simplified black-and-
white ones. For each task, we generate 60,000 images for
training, 20,000 for validation, and 20,000 for test.

Test Stimuli. Our test dataset comprises two types of stimuli
procedurally generated for IID and OOD test respectively. For
the IID test, the charts are generated using the same parameters
as in the training stimuli. To investigate how CNNs perform
on unseen visualizations, especially ones with variations in
parametric space, we generate new test stimuli for the OOD
test by perturbing the visual encoding parameters. We choose
to manipulate 9 parameters that can be divided into three
categories: global chart properties (title position, title font
size, and background color), task-unrelated mark properties
(bar width, bar color, stroke width, and stroke color), and
task-related mark properties (bar length and dot position).
Fig. 4 depicts one exemplary perturbation for each of the nine
parameters of the type 1 bar chart.

For each parameter, except bar length, we gradually increase
and decrease the corresponding value in the training stimuli,
such as luminance for color-related parameters. For example,
chart titles are center-aligned in the training set, whereas
in the test stimuli they are gradually moved to the left or
right by 15% of the canvas width each time. Since the color
sets assigned to the background and stroke consist of the
brightest and darkest colors, respectively, we only decrease
the luminance of the background colors and increase the
luminance of the stroke colors. If the perturbed value of one
parameter ends up out of the valid range, we discard the
corresponding stimuli. The bar length is determined by the

encoded data value. Since the range of data values in the
training stimuli is [10,93], we generate the bar lengths for
the test stimuli in the value range [1,9]∪ [94,100].

By default, the perturbations of each parameter have six
levels, as shown on the x-axis of Fig. 5. For example, the title
position is moved by 15% of the canvas width three times from
the center to both the left and right direction, respectively.
To ensure that all marks are within the canvas and do not
overlap with each other, we only set four levels of perturbation
for bar width on types 1 and 3, and two levels for stroke
width on all types of bar charts. As for dot position, we only
move it along the horizontal direction for stacked bar charts
(type 2,4,5) and the vertical direction for grouped bar charts
(type 1,3). For each level of the perturbation, we use the same
method described earlier in this section to generate 1,000 chart
images. Taking all types and all levels of perturbed charts
together results in a total number of 266,000 test stimuli.

B. Generalization Performance of CNNs

With our new GRAPE dataset, we re-train the different
model configurations described in Section IV for each type
of chart to test the IID generalization on standard visual-
izations. Then, we apply the trained CNN models to each
set of perturbed test visualizations to benchmark their OOD
generalization. Fig. 5 shows the results.

IID Test. The MLAE values corresponding to the zero per-
turbation value on the x-axis of Fig. 5(a-h) and the [10,93]
interval on the value range column of Fig. 5(i) are the average
MLAE values of CNN estimations on standard visualizations
with our expanded settings. Even though more complicated
datasets are fed into the CNNs, our results are significantly
better than Haehn et al.’s [20]. The test MLAE values for the
five types of bar charts are all between −2.52 and −1.91,
whereas even the best performance reported by Haehn et al.
for the same tasks is above 3.

Compared with the results in Section IV, where CNNs were
trained with black-and-white images under highly controlled
settings, the overall MLAEs on standard visualizations only
dropped less than .5 for all types of tasks. These average
MLAE values (all negative) are also significantly lower than
those of humans reported by Haehn et al. [20], which are 1.4
on the over-simplified stimuli. In summary, our results show
that CNNs can achieve extremely high IID generalization
performance on graphical perception tasks. They produce
unbiased estimations for all types of bar charts when both
training and test data satisfy the IID property.
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(b) Background color (d) Stroke color(c) Bar color (e) Title position

Fig. 4. An exemplar training stimulus (a) of type-1 and the test stimulus (b-j) generated by perturbing eight different parameters of one bar chart of type-1
at one specific level.

OOD Test. The curves in Fig. 5 show how MLAE changes
as a function of the perturbation levels of each parameter.
We see that MLAE values are almost the same for different
perturbations of the title position (Fig. 5 (a)) and title font size
(Fig. 5 (b)), except for type 2 and 5 on the -45% perturbation
of title position. For the three color parameters (Fig. 5 (c-e)),
CNNs are least robust to the background color as the MLAE
values of CNNs’ estimation on all types of charts change to
around 4.0 when the luminance value decreases by 15. This
might be reasonable since the background color affects a larger
area and can significantly change the appearance of the whole
chart compared to the colors of other visual marks.

While the MLAE values do not change much for minor
perturbations of color and title parameters, we find that a
small positive or negative change to some parameters like bar
width, stroke width, and dot position cause significant changes,
forming the symmetric curves in Fig. 5(f-h). For example,
increasing or decreasing just one pixel of stroke width results
in a change from −2.5 to 4.0 of the MLAE value on type-
2 bar charts. As for the bar length encoded by the value
ranges [1,9]∪ [94,100], the MLAE values of types 1 and 3
are even larger than 4.0, whereas for types 2 and 4, the values
are less than 2.0. These results indicate that the CNNs might
not have modeled the ratio estimation task correctly, as many
task-unrelated visual properties heavily impact its relational
reasoning.

Among these five types of bar charts, only type 2 is robust
to the perturbation of dot position, which is used to indicate
the target bars (Fig. 5(h)). We speculate that the reason for this
phenomenon is that the target bars of type 2 are restricted to
the only two ones on the bottom of the chart, i.e., the indices
are actually fixed, which makes it easier for a CNN to model
the task. In contrast, the MLAE values of type 2 and 5 all show
significant changes when the title is moved to the leftmost
position (Fig. 5(a)). This is unexpected since the title position
is unrelated to the target bars. For the stroke color and bar
color, types 2, 4, and 5 are less robust to large perturbations
than the other types. We speculate that the relatively large color

complexity (i.e., more colors are placed closely) in the three
stacked bar charts makes CNNs more sensitive to variations
of stroke and bar colors.

In summary, we report two findings for OOD generalization:
(i) the relational reasoning ability of CNNs is heavily in-
fluenced by most visual parameters, regardless of whether
they are related or unrelated to the target visual marks;
and (ii) the generalization performances of trained CNN
models are almost equal on different types of bar charts in
the IID setting, but vary significantly in the OOD setting.
Combining these observations, we draw the conclusion that
despite their outstanding performance on ordinary IID tests,
our used CNNs have not truly learned how to solve the ratio
estimation task correctly.

C. Comparison with Human Performance

To further check whether the generalization performance of
CNNs aligns with humans, we conduct a user study to perform
the same tasks with human subjects in the IID and OOD
settings as described in Section V-B and then compare their
results. For obtaining high-quality human data, we perform
the ratio estimation task in a well-controlled lab environment
with sufficient control over the physical workspace, display
calibration, and observer attention.

Measure. Before describing our study, we first define MLAE
deviation to quantitatively measure the influence of different
perturbations on CNNs and humans:

∆MLAE(θ̂) = MLAE(θ̂ood)−MLAE(θ̂iid), (3)

where θ̂iid is an estimated value of the chart without per-
turbation, θ̂ood is the corresponding predicted value of the
same target after a perturbing operation is performed. A larger
deviation means the perturbation has a greater influence.

Experiment Design. In this experiment, each participant is
asked to estimate length ratios of bar charts generated by
applying different levels of perturbations on eight parameters.
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Fig. 5. The mean MLAE values produced by CNNs on performing generalization tests of eight parameters on five types of bar charts. (a-h) Each curve
shows how the MLAE values change by increasing or decreasing the corresponding parameter values. The dotted lines indicate the MLAE value computed
for the stimuli with non-perturbed parameters. (i) Estimated MLAE values for bar charts with bar lengths encoded by different value ranges.

The purpose is to examine whether these perturbations affect
human perception in a similar way as they do for CNNs. To
this end, there are two kinds of conditions: parameters and
perturbation levels. Note that we do not include the title font
size, because its perturbation almost brings no change to the
MLAE values of CNNs (Fig. 5(b)).

However, the number of all stimuli used for evaluating the
generalization performance of the CNNs is too large for a
human subject study. For example, in our automatic CNN tests,
the background color has 7 levels. If we select 5 images for
each level of all five types, we end up with 5× 7× 5 = 175
bar charts, which would be excessively demanding for human
subjects if presented directly.

To address this issue, we introduce a two-phase exper-
imental scheme based on the previous finding that small
perturbations do not affect human judgment significantly [15].
Generally, we first identify the visual parameters that have the
greatest impact on human judgments and then evaluate how
humans respond to different levels of perturbations applied
to the identified parameters. If human subjects consistently
perform well even as the most influential parameters are
altered, we can infer that humans are robust to variations in
visual parameters in relational reasoning tasks on bar charts.

Specifically, in the first phase, we evaluate human perfor-
mance on five types of bar charts with the largest perturbations
to each of the visual parameters in Fig. 4. Here, we have eight
conditions, where each condition corresponds to one visual
parameter. To further reduce the number of trials, we ask each
participant to complete the tasks of all eight parameters for
one type of chart and recruit the same number of different
participants for each chart type. Then, we identify the top
three (type, parameter) pairs that affect human performance the
most, and conduct progressive perturbing experiments on these
pairs as in Section V-A in the second phase. Since our goal
is to investigate how different perturbation levels of the three
most influential parameters affect human estimation accuracy,
we ask each participant to complete the trials generated by all

perturbation levels of all three pairs. Thus, the first phase of
our experiment is a between-subject design where participants
are divided into five groups and each group completes the trials
of one type of bar charts, while the second phase is a within-
subject design to evaluate the effect of different perturbation
operations.
Device. The study was run on a quad-core PC with a 23-
inch color-calibrated screen monitor (120 Hz refresh rate)
using a mouse as input and a 1920×1080 pixel display. All
participants were seated with their eyes approximately 60 cm
from the display in a quiet room.

Hypotheses. As we saw, CNNs perform significantly better
than humans for the over-simplified charts in Section IV. Other
studies have shown, however, that they are less robust than
humans to image manipulations [15]. Thus, we formulate the
following two hypotheses:
H1: Human performance is inferior to CNNs in terms of

estimation accuracy on standard visualizations; and
H2: Human performance is more robust to perturbations of

various visual parameters than that of CNNs.
Participants. We recruited participants with color-normal vi-
sion from our local universities and communities. Since bar
charts are common visualizations, we follow the conclusion
from Hall et al. [22] that task performance would not have
significant differences across professions and set no condition
on the occupation of participants. We had 20 participants to
complete the corresponding tasks for each of the five types of
bar charts in the first phase, and 20 participants for all three
(type, parameter) pairs in the second phase. Note that none of
the participants acted repeatedly either in different phases or
groups. Thus, we have 20×5 + 20 = 120 participants in total
(ages between 18 and 45, 50 females).

Procedure. We applied the following procedure in the lab
study: (i) explaining the tasks by the researcher, followed by
training; (ii) performing the study; and (iii) a short interview.
Three training trials were provided to help participants get
familiar with the task and our user study system. For each type
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Fig. 6. Comparison of bar chart tasks produced by humans and CNNs: mean MLAE and 95% confidence interval values produced by humans and CNNs on
five types of bar charts without and with the largest level perturbations on eight parameters.
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vary along the perturbation levels on the eight parameters.

of bar chart, we selected 5 random images without perturbation
and then generated 5 images for each one of the 8 visual
parameters by perturbing the corresponding parameter of those
selected images, resulting in 5 + 5 × 8 = 45 stimuli shown
to each participant in the first phase. In the second phase,
each participant needed to complete 5 trials for each level
of perturbations to three visual parameters identified as most
influential in the previous phase, i.e., 5+5× (6+6+2) = 75
stimuli. In the interviews, we asked participants how they per-
formed the task and which factors influenced their estimation
through questionnaire. Overall, it took about 15 minutes for
each participant to finish the whole study, including 10 minutes
for completing the task and 5 minutes for interview.

Results Analysis. We first conducted a preliminary analysis
of our collected data. We used the D’Agostino-Pearson test to
quantitatively confirm the normality of log errors’ distribution.
The results show that the log error distributions of human and
CNN results are not normal distributions. Thus, following prior
studies [5], [20], we compute the bootstrap distribution of the
means of log errors using the 95% confidence interval. Note
that the results from the between-subject study are treated as

independent groups and do not support cross-group analysis.
Fig. 6 summarizes the results of humans and CNNs for

five bar chart tasks without and with the largest perturbations,
respectively. We see that the MLAE values of humans are
significantly larger than the ones of CNNs for all parameters
without perturbation (p < 0.01). Yet, the MLAE values of
humans are smaller than the ones of CNNs for some pa-
rameters (e.g., stroke color) with perturbations in the OOD
setting. We make similar observations in Fig. 7(a). Thus, we
partially accept H1. Fig. 7(b) present the summarized average
MLAE deviation of CNNs and humans on all bar charts. We
see that humans are more robust than CNNs with smaller
MLAE deviation for all tested levels of the most influential
parameters. Thus, we accept H2.

By using the Student’s t-test to detect significant differences
among parameters, we found that the human MLAE deviation
shows significant differences for the bar length compared to
the other parameters (p < 0.05), whereas the MLAE deviation
of the CNNs shows significant differences between all pairs
of parameters (p < 0.01). These statistics indicate that humans
and CNNs might use different reasoning processes. Thus, we
speculate that humans are mainly influenced by the bar
length but CNNs are influenced (and disturbed) by many
other factors.

This speculation is also supported by the interview results.
Most participants mentioned that they did not notice the
perturbations of parameters. They said it was hard to estimate
the ratio when the difference between two bar lengths was
too large or too small. These observations are consistent with
the results produced by humans on the bar charts encoded
within the value range [10,93] and the ones in the range
[1,9]∪ [94,100], where the latter ones result in significantly
larger MLAE values.

VI. UNDERSTANDING AND IMPROVING CNNS

Our user study results show that humans tend to estimate
bar length ratios based on specific parameters of the target
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Fig. 8. The Grad-CAM maps show the important regions in the chart image for estimating length ratios across five bar chart types. The two rows correspond
to the charts without perturbations (first row) and with minor perturbations of the bar width (second row).

bars while ignoring other task-irrelevant aspects of the chart.
In contrast, CNNs inference involves many visual parameters,
which may explain why their performance is not as robust as
humans. To visually explore the inference of a CNN model,
we use the gradient weighted class activation mapping (Grad-
CAM) [53] to localize the important regions of the chart image
during inference.

Grad-CAM Map. Since the last convolutional layers of the
CNN model are expected to retain the task-relevant spa-
tial information, we visualize their corresponding Grad-CAM
maps. As shown in Fig. 8, the two rows of Grad-CAM maps
correspond to the bar charts without and with the perturbation
of bar width, respectively. We see that only type 2 focuses
on the target bars (Fig. 8(b,g)) whose indices are fixed. We
speculate this is caused by the sufficient capacity of the model
in memorizing the indices information of the training data. In
contrast, almost all regions of interest in the other types are
unrelated to the task. For example, the focus region in type 1 is
unrelated to all bars (Fig. 8(a,f)). Comparing the maps without
and with perturbations, we see that even a small amount
of perturbations on some visual parameters can dramatically
change the resulting Grad-CAM maps.

Quantitative Analysis. We further assess the target region
localization ability of CNNs by measuring the Intersection
over Union (IoU) between the area of target bars T and the
high-intensity region of the Grad-CAM map G as follows:

IoU =
|T ∩G|
|T ∪G| . (4)

We programmatically identify the segmented area of target
bars (shown in Fig. 9(a)), and extract the high-intensity regions
of the Grad-CAM map (illustrated in Fig. 9(b)) by empirically
applying a threshold of 200. We compute the IoU scores for
all type-1 stimuli in both IID and OOD tests. The results,
visualized as dashed lines in Fig. 9(c), show that mean IoU
scores across all conditions are close to zero, indicating

minimal overlap between the two areas. This suggests that
CNNs might be using regions other than the target bars
for relational reasoning on bar charts assuming Grad-
CAM accurately reveals important features. However, there
is no consensus on the effectiveness of different explainable
AI methods [32] (see results in the supplemental material),
even though Grad-CAM remains a popular technique.

Data Augmentation. To learn how well a CNN model trained
with perturbed bar charts deals with other perturbations, we
performed data augmentation using different combinations of
the perturbations and then trained the model from scratch.
When training a CNN model on two types of parameter
perturbations (e.g., bar length and bar width), each type of
perturbation was drawn uniformly. Taking the bar charts with
the perturbation of bar length and bar width as an example, the
bar length in each chart was encoded by the data range [1,100]
and the bar width was a random value of the set {4,5,6,7,8}.
Fig. 10 visualizes the testing result of the model on charts
with the same or different perturbations.

We find that while all models are robust to the perturbation
of title positions and those they were explicitly trained on, they
all exhibit poor generalization performance on the perturba-
tions that were not included in their training sets, especially the
ones of the dot position. Notably, dot position and bar width
seem to be the most influential parameters. Given the endless
range of possible perturbations, it is impractical to train on
every variation. Thus, we conclude that data augmentation
cannot close the human-CNN generalization performance
gap in the task of relational reasoning with bar charts.

Segmentation Mask. In the second attempt to improve CNN
performance, we add a segmentation mask of the target bars
as an additional alpha channel to each chart image. The
segmentation mask is a binary mask of equal size to the
original image, where pixels in the segmented foreground
are all white and the background is all black. We render
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Fig. 9. Improving the generalization performance of CNNs by providing
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And curves showing how IoU scores (c) and MLAE values (d) change over
different levels of perturbations of one of eight parameters.

these segmentation masks for all bar charts in the GRAPE
dataset. After training a CNN model with the corresponding
RGB-α images, we tested the target region localization by
Equation 4 and the generalization performance of the model as
in Section V-B, the results are shown in Fig. 9(c,d). We see that
(i) CNNs can better localize the target bars with the provided
segmentation masks, as evidenced by the significant increase
of the IoU scores, and (ii) CNNs’ robustness has improved
against most perturbations in visual encodings of bar charts
such as title position, background color, and bar color.

However, this mask-enhanced CNN model is still sensitive
to bar width and stroke width as shown in Fig. 9(d). This
suggests that while segmentation masks may address the
generalization issues related to texture/color in bar charts,
generalizing to shape variations remains a difficult task
for CNNs. This observation is consistent with the findings
reported in [14] that CNNs rely heavily on texture information
when performing object recognition tasks and that models
trained with stronger shape bias can exhibit greater robustness.
Moreover, the resulting mean MLAE value is 2.28 for the bar
lengths encoded in the range [1,9]∪ [94,100], indicating that
this model does not only use bar lengths to estimate ratios.
In other words, even though the CNNs are provided with a
segmentation mask, they cannot estimate length ratios as well
as humans in certain cases.

Because the segmentation masks are based on the complete
and accurate segmentation of the target bars, removing the

pixel dot in the RGB image (see the dots in Fig. 9(a)) does
not degrade the model’s performance. Yet, the CNNs cannot
complete the task when the mask is incomplete. For example,
if we only denote the pixel dot in the alpha map, the training
process does not converge at all. Even replacing the pixel dot
with a small Gaussian blob results in an MLAE value of 4.32.

VII. DISCUSSION

Evaluating Vision Models with Grammar of Graphics. For
over a decade, the computer vision community has been using
ImageNet [9], a large-scale dataset that contains 3.2 million
natural images, as the benchmark dataset for training and
evaluating the generalization performance of vision models.
Compared with natural images, the design space of data
visualization contains more complex and hierarchical semantic
information. Each visual element in visualizations has its
own semantic meaning that contributes to a specific visual
expression. For example, even the smallest components of
a diagram, such as tick marks, are important indications of
the correspondence between numbers and the coordinate axis.
This makes it harder for neural networks to learn appropriate
features and relations between different visual marks. Synthe-
sizing large-scale visualization datasets using the grammar of
graphics, such as GRAPE, will allow the research community
to conduct more systematic evaluations of graphical perception
of machines and humans.

Network Architecture and Task-oriented Attention. Our
experiments show that title position affects the robustness
of CNNs on certain bar charts, even though it is irrelevant
to graphical perception tasks. In contrast, humans do not
have this issue due to our robust attention mechanism. The
Transformers architecture [57] uses self-attention mechanism
that has proven highly effective in [11], [41] and may be robust
to the perturbations on certain parameters. Since visualizations
are often task-dependent, different tasks have different relevant
visual encodings. For example, reading values from a bar
chart requires understanding the axis, while estimating the
ratio between bars requires comparing bar lengths. Hence,
we believe that a task-oriented attention mechanism that can
understand and reason about task-related visual encodings will
enhance performance in graphical perception and computa-
tional visualization analysis.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a comprehensive generalization
analysis for CNNs and humans on graphical perception tasks
with bar charts. We find that appropriately trained CNNs
can outperform humans on ratio estimation tasks. Based on
the carefully selected configuration (ResNet152 and AdamW
solver), we show that CNNs also outperform humans on graph-
ical perception tasks using standard visualizations specified
by Vega-Lite where the visual parameter space is greatly
expanded compared to previous studies [5], [20].

Furthermore, we compare the generalization performance
of CNNs and humans by progressively perturbing the design
space of the standard visualizations and conducted a user
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Fig. 10. Improving the generalization performance of CNNs by augmenting training data with different perturbations. The heatmap shows the average MLAE
values for testing CNNs on the chart images with different perturbations, where columns correspond to differently trained networks and rows show different
test conditions. The cell highlighted by a bold red font indicates that the testing stimuli have similar perturbations as the ones in the training stimuli.

study. We created a large dataset of visualizations called
GRAPE by programmatically exploring the grammar of graph-
ics using Vega-Lite. The results of our user studies show that
(i) CNNs outperform humans but are less robust when the
training data and test data are similar in visual encodings (IID),
and (ii) human performance is more robust to perturbations of
various visual parameters than that of CNNs (OOD). Hence,
we conclude that CNNs’ inference process involves many
visual variables, yet they lack robust recognition of the target
visual marks. Note that the human performance is collected
from the user study with a small number of participants,
we will conduct a larger-scale study to further confirm this
conclusion in the future.

This work is the first step in the systematic study of the gen-
eralization behavior of CNNs for visualization applications.
There is still a lot to explore. First, we identified our hyper-
parameters in an ad-hoc way. It would be better to use recently
proposed AutoML techniques [25] to automatically build and
train optimal neural networks for graphical perception tasks.
Second, our analysis results reveal that some factors like
background color and stroke color that are unrelated to the
graphical perception tasks heavily impact the OOD general-
ization of CNNs. We plan to explore more recently proposed
deep learning frameworks, such as Vision Transformers [11]
and CLIP [49], to see if they are able to close the gap between
humans and CNNs for visualization graphical perception tasks.
Lastly, there are many visualizations (e.g., infographics [3],
[47]) that do not comply with the grammar of graphics and
still effectively communicate information. We would like to
examine the CNNs’ graphical perception abilities on such
creative visualizations.

While this work focuses on graphical perception tasks, we
believe that many applications regarding data visualizations
should be evaluated from the generalizability perspective. For
example, building on the rencent success of LLMs, many
chart-centered large multimodal models (LMMs) [40], [45]
have been developed. While these models demonstrated strong
performance on several chart QA benchmarks, their sensitivity
to various visual variations may still fall short of matching

human-level robustness in relational reasoning tasks. Our study
highlights the necessity of evaluating the OOD generalization
of such LMMs. In the future, we plan to create a research
benchmark for evaluating the generalization performance for
different visualization techniques and analysis tasks.
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