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ABSTRACT

Current multimodal large language models (MLLMs), while ef-
fective in natural image understanding, struggle with visualization
understanding due to their inability to decode the data-to-visual
mapping and extract structured information. To address these chal-
lenges, we propose SimVec, a novel simplified vector format that
encodes chart elements such as mark type, position, and size. The
effectiveness of SimVec is demonstrated by using MLLMs to recon-
struct chart information from SimVec formats. Then, we build a
new visualization dataset, SimVecVis, to enhance the performance
of MLLMs in visualization understanding, which consists of three
key dimensions: bitmap images of charts, their SimVec represen-
tations, and corresponding data-centric question-answering (QA)
pairs with explanatory chain-of-thought (CoT) descriptions. We fine-
tune state-of-the-art MLLMs (e.g., MiniCPM and Qwen-VL), using
SimVecVis with different dataset dimensions. The experimental re-
sults show that it leads to substantial performance improvements of
MLLMs with good spatial perception capabilities (e.g., MiniCPM)
in data-centric QA tasks. Our dataset and source code are available
at: https://github.com/VIDA-Lab/SimVecVis.
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1 INTRODUCTION

As charts have become a dominant medium for conveying data in
scientific and practical contexts, manual interpretation at scale has
become infeasible, calling for automated methods that can reliably
understand visualizations. However, current MLLMs, originally
designed for natural images, fall short in this domain due to a funda-
mental distinction: natural images depict real-world objects based
on their visual appearance, while visualizations convey data through
encoding rules that map data to visual attributes of elements such as
marks, axes, and legends. Existing MLLMs are often not equipped
to interpret such encoding rules, which are rarely present in natural
image training data.

Visualization understanding goes beyond the mere recognition
of visible content. It involves reasoning about how visual channels
represent data values and inferring the underlying data in visual-
izations from different sources, including scanned documents and
historical print media. To address the challenge of visualization
understanding, we first propose SimVec, a novel Simplified Vector)
format to capture visual mark attributes (e.g., mark type, position,
size, color), which provides a machine-readable abstraction of visu-
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alizations. Built upon it, we further construct a new visualization
dataset, SimVecVis, for fine-tuning MLLMs and improving their per-
formance of visualization understanding. SimVecVis contains 2,999
visualizations like bar charts, line charts, and area charts, and each
visualization consists of three key dimensions: visualization bitmap
image, SimVec representation, and data-centric QA pairs with CoT
descriptions. The visualization bitmap image is commonly used for
visualization understanding tasks and encodes the comprehensive
information of a chart. The corresponding SimVec representation
provides a more machine-friendly encoding of visualization infor-
mation. The data-centric QA pairs with CoT descriptions cover
chart QA tasks, like identifying the value of the tallest bar in a bar
chart, and include detailed CoT reasoning descriptions, which can
guide MLLMs to learn the proper strategies for visualization under-
standing as well as reasoning. We conduct extensive experiments of
fine-tuning MLLMs with SimVecVis with different dataset dimen-
sions, and the results demonstrate its effectiveness in significantly
enhancing the visualization understanding performance of MLLMs
with good spatial perception capabilities like MiniCPM [14]. The
expressiveness of our SimVec representations is also proved via
visualization information construction experiments.

The contributions of this work are summarized as follows:
• We propose a novel chart format, SimVec, for a compact and

structured representation of charts.
• We construct a visualization dataset with 2,999 visualizations,

SimVecVis, aiming to explicitly enhance MLLMs’ visualization
understanding capabilities.

• We show the expressiveness of SimVec via MLLM-based chart
information reconstruction and demonstrate that fine-tuning
MLLMs with SimVecVis can improve their performance in visu-
alization understanding.

2 RELATED WORK

2.1 Artificial Intelligence for Visualization Understanding

Artificial intelligence has increasingly contributed to improving the
understanding of visualizations. Early systems [7, 25, 30] were pri-
marily rule-based, leveraging handcrafted grammars to parse chart
structures and natural language. For example, Show Me [25], Voy-
ager [33], Iris [9], and FlowSense [35] applied structured rules to
support visualization querying. With the rise of deep learning, these
approaches [20,24,27] model the relationship between visual encod-
ings and semantics, enabling more accurate recommendations. A
growing body of work focuses on understanding of existing visual-
izations through natural language. Key tasks include chart question
answering (ChartQA) [15,16,18,32], chart captioning [6,22], and au-
tomatic natural language annotation [19]. These tasks aim to convert
chart content into human-readable forms to facilitate interpretation.

Recently, MLLMs have been applied to visualization understand-
ing. For example, mChartQA [32] transforms charts into data ta-
bles to enable precise chart reasoning, while systems such as Tiny-
Chart [37] and ChartX [34] directly process chart images through
vision-language models. Despite promising results, visualizations
often involve spatially structured elements, such as axes, tick labels,
and marks, which are not well represented in general pretraining.

https://github.com/VIDA-Lab/SimVecVis


Figure 1: We convert the metadata into digital-format charts and
then into historical-style charts. We also generate corresponding
SimVec representations for the charts.

Moreover, current MLLMs for visualization tend to produce di-
rect outputs without explicit reasoning, unlike human users, who
typically engage in step-by-step inference when interpreting visu-
alizations. To address these gaps, we propose SimVecVis, which
introduces a compact vectorized representation of charts and in-
corporates chain-of-thought (CoT) reasoning into chart question
answering. We further fine-tune our framework on models such
as MiniCPM [14], which demonstrate good spatial awareness and
support high-resolution visual input.

2.2 Visualization Datasets

Visualization researchers have constructed a series of visualization
datasets [21] in the past few years. For example, VisImages [8] com-
piles visualizations extracted from diverse media. D3 search [11]
crawled specific websites to collect visualizations created with
D3 [5], while VizML [12] retrieves data and visual encoding spec-
ifications from an online gallery. VizNet [13] offers a large-scale
corpus of 31 million data points gathered from open data reposi-
tories and online galleries. The reverse engineering visualization
dataset [29] aggregates images from Vega Charts, news sites, and aca-
demic papers. Fu et al. [10] use dimension reduction technique to de-
rive vector representations from infographic images. MASSVIS [4]
automatically collects visualizations across fields from online web-
sites. OldVisOnline and ZuantuSet gather historical visualizations
before the computer era [26,39]. However, existing datasets overlook
reasoning processes such as CoT and lack compact vector represen-
tations for reconstruction, which are the focus of SimVecVis.

3 SIMVEC FORMAT

Vector formats (e.g., SVG) are widely used to represent visualiza-
tions. However, their structural flexibility and stylistic richness
can hinder machine understanding. First, SVG supports nested
<g> groups with transform attributes, leading to structural vari-
ability—semantically identical layouts may differ significantly in
representation. Second, SVG provides multiple encoding methods
for the same visual element. For example, a simple bar can be repre-
sented using a rect, path, polygon, or points element. Although
these alternatives render identically to the human eye, they introduce
syntactic inconsistency that complicates automated parsing and rea-
soning. Moreover, SVG files often include stylistic metadata, such
as font-family, filters, or shadows, that are not essential for under-
standing the underlying data. To address these issues, we propose
SimVec, a simplified vector format designed to retain the essential
visual structure while enforcing a consistent, machine-readable rep-
resentation. SimVec reduces complexity by: (1) flattening nested
elements into an ordered list, (2) standardizing coordinates and color
encodings, and (3) removing redundant styling. To support a variety
of visualizations (C1), SimVec consists of four element types, as
depicted in Table 1. SimVec is compact, reducing the token count
by about 90% compared to the original SVG chart (e.g., generated
using Vega-Lite). The tokenized length of the SVG may exceed
the context window limits of many MLLMs, making it difficult for
models to process.

Element Description Format Example
Text Represents textual content

with position and styling
information. Used for ti-
tles, labels, and annota-
tions

{text: content,

bbox: [left, top,

width, height],

color: (h, s, l)}

{text "Title" [100, 50,
200, 30] hsl (0, 0, 18)}

Rectangle Used for bars, back-
grounds, and other
rectangular shapes. De-
fined by bounding box
coordinates

{rect: bbox[left,

top, width,

height], color:

(h, s, l)}

{rect [100, 100, 50, 150]
hsl (10, 15, 12)}

Line Represents axes, grid lines,
and connecting lines. De-
fined by a series of points

{line:
points[(x1, y1),
(x2, y2), ...],
color: (h, s, l)}

{line [(0, 0), (100,
100)] hsl (0, 0, 5)}

Polygon Used for complex shapes
and areas. Defined by a
series of connected points
forming a closed shape

{polygon:
points[(x1, y1),
(x2, y2), ...],
color: (h, s, l)}

{polygon [(0, 0), (50,
50), (100, 0)] hsl (5, 10,

15)}

Table 1: All the coordinates and size mentioned above are described
using a uniform value where the size is set to 1000. The color is
represented in HSL color space and uniformized to [0-20] range.

Figure 2: Historical-style visualizations with paper-texture, hand-
drawn fonts, and hand-drawn lines.

4 DATASET CONSTRUCTION

To enable models to effectively understand charts, there are four
design considerations for the SimVecVis dataset:

C1: Diverse Visualization Types. The dataset should include
diverse visualization types and data attributes. Specifically, the
dataset should contain common visualization types [3] such as bar
charts, line charts, and area charts, covering different attributes like
numerical, categorical, and temporal attributes from diverse topics.

C2: Accurate Data Features. We focus on data-centric QA
tasks, specifically retrieving values and finding extremes [1]. Unlike
trend detection, correlation estimation, or outlier detection, which
can often be inferred from the overall shape of the chart, data QA
requires precise decoding of the underlying quantitative values.

C3: Intermediate Reasoning. Many data QA questions require
step-by-step reasoning—for instance, interpreting axis scales before
mapping visual elements to values [28]. SimVecVis supports this
process through chain-of-thought (CoT) annotations.

C4: Robustness to Imperfect Visual Inputs. To enhance practi-
cal relevance, SimVecVis incorporates charts from realistic settings,
including hand-drawn visualizations sourced from historical doc-
uments. These visualizations often lack original data and feature
noisy, irregular layouts, presenting unique challenges for percep-
tion and reasoning. Incorporating such visualizations can benefit
the development of models capable of handling a wide range of
visualizations beyond clean synthetic charts.

4.1 SimVecVis Dimensions
Fig. 1 illustrates the overall SimVecVis construction pipeline. Each
instance contains the following components: a visualization image,
its corresponding SimVec, and a set of question-answer (QA) pairs.
Each QA pair is accompanied by a CoT description.



Visualization Bitmap Image. To ensure diversity, we prompt
GPT-4o to generate meaningful data attributes based on commonly
discussed topics. For example, in the energy domain, the LLM
generates a categorical attribute (e.g., energy source), a temporal
attribute (e.g., year), and corresponding quantitative values. We
then populate these attributes with randomly synthesized data. The
resulting datasets are then visualized using predefined templates for
bar, line, or area charts. Color schemes are randomly assigned.

SimVec. The SVG format is then converted into a SimVec format,
which captures a structured and vectorized representation of the
visualization content. Ideally, if the elements of a visualization
image can be reconstructed using SimVec, it will enable a precise
extraction of axes and element position, size, and color. Therefore,
our dataset includes SimVec for reconstructing the visualization
structure and supporting further QA tasks (C2).

QA-pairs with CoT Descriptions. Given the metadata asso-
ciated with each chart, we generate question-answer (QA) pairs.
Among the low-level tasks [1], we focus on data tasks (C2), such as
retrieving values and finding extremes. A question can be: “What
is the proportion of gas in 2020?”, with the corresponding answer
being “35%”. Each QA pair has a CoT description. When hu-
mans extract precise information from visualizations, they engage in
an intermediate reasoning process (e.g., identifying axis mapping).
Unlike previous datasets [32], our dataset incorporates reasoning
steps in the question-answering process (C3), implementing what is
known as the CoT approach [31]. To support step-by-step reasoning,
we utilize axis metadata to guide the CoT process. For bar charts,
this involves identifying the target bar and mapping its height to
the corresponding value using the axis scale. A typical CoT trace
includes the axis scale information, intermediate calculations, and
the final answer. An example of a CoT description is “For the Y-axis
of the chart maps from 50 pixels to 450 pixels, corresponding to
a percentage range of 0% to 100%. The height of the bar repre-
senting Gas in 2020 is 140 pixels. Thus, Gas in 2020 accounts for
(140/(450−50))×100 = 35%.”

4.2 Preliminary Attempt on Historical Visualizations

While existing datasets focus on digitally rendered charts [17, 32]
that are created using toolkits (e.g., Vega-Lite), historical visual-
izations present distinct challenges in analysis and interpretation.
Vectorization and data extraction from historical visualizations [38]
require heavy user involvement. As a preliminary step toward ad-
dressing these challenges, we mocked historical visualizations from
digitally generated charts, aiming to expose models to stylistic vari-
ability beyond modern formats and improve their generalization and
recognition abilities (C4). Fig. 2 compares digital visualizations
with their corresponding historical-style representations. We employ
the following steps to mock historical-style visualizations:

• Paper Texture. We simulate historical paper by incorporating
natural textures and aging effects, including subtle surface irregu-
larities and a slight yellow tint. These features enhance the visual
distinction from modern, digitally rendered charts.

• Hand-drawn Fonts. We utilize specialized fonts that mimic
handwriting styles seen in historical documents. These fonts
provide a visually authentic handwritten appearance.

• Hand-drawn Lines. We reproduce the natural imperfections
of manually drawn lines by introducing controlled variations in
thickness and direction. These variations result in irregularities
characteristic of hand-drawn charts.

SimVecVis comprises 2,999 visualizations, including 1,012 bar
charts, 1,012 line charts, and 975 area charts. Each visualization
is accompanied by a corresponding encoding output and a SimVec
representation. The dataset includes 2,999 identification tasks and
5,642 extreme value detection tasks.

5 EXPERIMENTS

To evaluate whether SimVecVis brings measurable improvements in
visualization understanding, we conducted experiments centered on
three key hypotheses, which examine: (1) the limitations of existing
MLLMs, (2) the potential of CoT and SimVec to enhance visualiza-
tion understanding, and (3) whether such gains are attributable to
SimVec’s ability to support visualization reconstruction.
• H1: Existing MLLMs cannot accurately support data understand-

ing tasks without fine-tuning using SimVecVis.
• H2: CoT reasoning improves data QA accuracy, and is further

enhanced with SimVec support.
• H3: Training MLLMs with SimVec representations improves their

ability to reconstruct visualizations by providing a compact and
structured encoding of visual elements.

Table 2: Accuracy is reported as the percentage of predictions with
deviations of less than 5%, 10%, and 20% of ground truth values.
Qwen-VL did not benefit from SimVec, likely due to its limited abil-
ity to accurately localize chart elements, which may have introduced
additional computational burden during training.

Model < 5% < 10% < 20%

GPT-4o 16.54% 29.62% 42.69%
MiniCPM (zero-shot) 11.92% 17.69% 57.69%
DeepSeek-VL(zero-shot) 10.00% 17.31% 26.92%
Qwen-VL (zero-shot) 7.31% 13.46% 21.15%

MiniCPM (SimVec + QA w/ CoT) 53.84% 69.23% 80.77%
MiniCPM (QA w/ CoT) 29.23% 45.76% 69.23%
MiniCPM (QA w/o CoT) 26.92% 41.92% 25.38%
Qwen-VL (SimVec + QA w/ CoT) 5.38% 10.00% 18.08%
Qwen-VL (QA w/ CoT) 12.31% 21.54% 35.77%
Qwen-VL (QA w/o CoT) 11.54% 19.62% 31.15%

5.1 Performance Comparison of Zero-Shot Models
To validate H1, we assessed the zero-shot performance of several
MLLMs. We selected the leading closed-source MLLM, GPT-4o, as
well as several state-of-the-art open-source MLLMs: MiniCPM [14],
DeepSeek-VL [23], and Qwen-VL [2]. In our experiment, data tasks
rely on accurately localizing individual items. However, due to the
lack of nominal references in scatter plots, pinpointing and directly
identifying individual points is relatively challenging. Therefore, we
selected bar charts, area charts, and line charts, as they allow for
clearer localization of reference points through category and label
information. These questions necessitate decoding the visual encod-
ing in the chart to derive specific numerical values. The evaluation
results are presented in Table 2. The evaluation metrics are presented
as percentages, where accuracy is measured at three threshold levels:
within 5%, 10%, and 20% deviation from the ground truth values.
Among the four untrained models, GPT-4o performed best, which
aligns with expectations for a high-capacity model. MiniCPM out-
performed Qwen-VL and DeepSeek-VL, likely due to its specialized
training in text localization, which enhanced its ability to directly
extract numerical values.

H1 is supported. The overall performance of these MLLMs was
moderate: they failed on tasks that required fundamental reasoning
or simple calculations. In the following experiments, MiniCPM is
chosen as the primary model, and Qwen-VL is used as a baseline.

5.2 Influence of CoT and SimVec on Data QA Accuracy
To validate H2, we compared three settings used for model training.
We fine-tuned the model on 8 A100 40GB GPUs in about 14 hours
(Taking MiniCPM for example). When addressing the same data
question, the responses differ in the three settings: (1) QA without
CoT: This setting takes a visualization image and a question as
input and directly provides a numerical answer. (2) QA with CoT:



Table 3: Percentage of answers that have a difference rate under 5%, 10%, and 20%. The best performance is achieved by MiniCPM fine-tuned
with chain-of-thought supervision and SimVec.

Model Area Chart Bar Chart Line Chart
< 5% < 10% < 20% < 5% < 10% < 20% < 5% < 10% < 20%

MiniCPM (SimVec + QA w/ CoT) 38.16% 55.26% 69.74% 46.91% 65.43% 80.25% 70.87% 82.52% 89.32%
MiniCPM (QA w/ CoT) 18.42% 39.47% 63.16% 33.33% 45.68% 74.07% 33.98% 50.49% 69.90%
MiniCPM (QA w/o CoT) 23.68% 36.84% 51.85% 20.99% 34.57% 51.85% 33.01% 51.46% 64.08%
MiniCPM (zero-shot) 2.63% 6.58% 14.47% 17.28% 22.22% 25.93% 14.56% 22.33% 33.01%

Compared to the direct answer setting, we add CoT description prior
to the numerical answer. (3) SimVec + QA with CoT: In addition
to the CoT, the model is additionally trained to predict the SimVec
representation of the chart.

Table 2 shows that the model utilizing CoT supported by SimVec
yields optimal performance. Training enhanced with CoT signif-
icantly outperforms the direct answer setting. For MiniCPM, the
integration of SimVec information significantly enhanced its accu-
racy compared to using CoT reasoning alone. SimVec captures
visual attributes of both text and marks, offering essential context
(e.g., axes and encoding channels) required for effective CoT rea-
soning. However, for Qwen-VL, SimVec implementation did not
yield improved accuracy, likely due to the model’s limited ability to
localize chart elements, with SimVec potentially introducing addi-
tional computational overhead during training. A detailed analysis
of performance across various chart types for MiniCPM is illustrated
in Table 3. Notably, MiniCPM (SimVec + CoT) surpasses all other
model configurations in all chart types. The model performs sub-
stantially better on line charts compared to bar and area charts. This
may be because line charts convey values more directly through
position, whereas bar and area charts rely on height, which may
involve stacking and thus introduce additional visual complexity.
Despite improvements from SimVec and CoT, challenges remain.
Current MLLMs often struggle to estimate spatial properties like bar
height or line position, especially without explicit labels. Errors in
early reasoning steps tend to propagate and affect final answers.

H2 is supported. CoT reasoning, especially when combined
with SimVec, notably enhances MiniCPM’s accuracy and achieves
superior performance over current state-of-the-art MLLMs.

Table 4: Reconstruction Quality for Different Chart Types. The
distance unit is 1/1000 of the image size.

Quality Metric Line Bar Area
Text Hit Rate 99.79% 99.60% 99.83%
Text Similarity 98.37% 96.60% 98.72%
Text Center Distance 2.89 8.26 2.70
Element Color Distance 1.06 1.78 2.14
Element Position Distance 8.76 10.11 29.26

5.3 Reconstruction Capability using SimVec Format
To evaluate hypothesis H3, we assess the reconstruction capabilities
using the SimVec format. We use MiniCPM (SimVec + CoT) to take
an image as input and generate the corresponding SimVec as output.
The dataset includes 100 images of bar, line, and area charts. Fig. 3
shows the original input image and the image rendered using the
output reconstructed SimVec. The results demonstrate that different
types of charts can be recovered to a satisfactory extent. As shown
in Table 4, we calculate the hit rate and similarity as percentages.
The distance is calculated in terms of the average number of pixels,
where the image size is normalized to 1000 pixels. The quantitative
tests include the text accuracy and graphics accuracy:

Text Accuracy Evaluation. To assess the model’s text recon-
struction capabilities, we employed multiple metrics: the text hit
rate to measure the proportion of successfully recovered text ele-
ments, the text similarity using Levenshtein distance [36], and the
text center distance to evaluate spatial accuracy of text placement.

Experimental results demonstrate the model’s robust performance,
with text similarity reaching 98%. The average center distance de-
viation ranges from 0.27% to 0.83% of the image size (defined as
the larger dimension of height or width), indicating high precision
in spatial text recovery.

Figure 3: For each case (A, B, and C), the top panel displays the
original input visualization, while the bottom panel shows the recon-
structed result rendered using the SimVec output by the model.

Graphics Accuracy Evaluation. We employed the average pixel
distance between predicted vertices and their corresponding ground
truth as a metric to assess the reconstruction capabilities. The line
elements in line charts demonstrated the highest precision with an
average positional deviation of merely 0.88% of the image size. Bar
elements showed comparable accuracy at 1% of image size, while
area charts exhibited a slightly higher average distance of approx-
imately 3%. These performance metrics align consistently with
the data accuracy rankings presented in Table 3. For color fidelity
assessment, we calculated the Euclidean distance between predicted
and ground truth colors in the HSL color space (each dimension
normalized to [0, 20]). The color differences’ effect on overall
perception is minor; for example, the differences are sufficient to
identify distinct colors but unlikely to impair understanding.

These results validate H3, confirming that the SimVec format
effectively supports high-fidelity reconstruction of both textual and
graphical elements. Nevertheless, errors at the value level persist,
mainly due to error accumulation in multi-step reasoning.

6 CONCLUSION AND FUTURE WORK

We introduce SimVecVis that pairs bitmap charts with their SimVec
representations and includes data QA tasks with CoT description,
enabling supervised training for visualization understanding. We
aim to expand the dataset to include infographics to support broader
visualization scenarios.
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