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Fig. 1: TrajLens: (A) The Core Cell Selection View helps users select the core cell type based on temporal occurrences and quantitative
changes during biological development. (B) The Path Selection View assist users in intuitively selecting and analyzing complex cell
developmental paths with a focus on high-frequency and diverse trajectories. (C) The Path Inspection View reveals spatial evolutionary
patterns through a multi-row synchronized view, facilitating comprehensive validation of biological evolutionary relationships with
features for sequence inspection, single-sample inspection, and similarity assessment. (D) The Gene Function View present significant
gene functions identified through the analysis of single-sample sequences.

Abstract—Constructing cell developmental trajectories is a critical task in single-cell RNA sequencing (scRNA-seq) analysis, enabling
the inference of potential cellular progression paths. However, current automated methods are limited to establishing cell developmental
trajectories within individual samples, necessitating biologists to manually link cells across samples to construct complete cross-sample
evolutionary trajectories that consider cellular spatial dynamics. This process demands substantial human effort due to the complex
spatial correspondence between each pair of samples. To address this challenge, we first proposed a GNN-based model to predict
cross-sample cell developmental trajectories. We then developed TrajLens, a visual analytics system that supports biologists in
exploring and refining the cell developmental trajectories based on predicted links. Specifically, we designed the visualization that
integrates features on cell distribution and developmental direction across multiple samples, providing an overview of the spatial
evolutionary patterns of cell populations along trajectories. Additionally, we included contour maps superimposed on the original cell
distribution data, enabling biologists to explore them intuitively. To demonstrate our system’s performance, we conducted quantitative
evaluations of our model with two case studies and expert interviews to validate its usefulness and effectiveness.

Index Terms—Visual Analytics, Single-cell RNA Sequencing, Cell Developmental Trajectories

1 INTRODUCTION

• Q. Wang, M. Zhu are with Sichuan University. E-mail:
wangqipengscu@stu.scu.edu.cn, zhumin@scu.edu.cn

• S. Ruan is with Singapore Management University. E-mail:
slruan.2021@phdcs.smu.edu.sg. S. Ruan is also with Monash University.

• R. Sheng, H. Qu are with Hong Kong University of Science and Technology.
E-mail: rshengac@connect.ust.hk, huamin@cse.ust.hk.

• Y. Wang is with Nanyang Technological University. E-mail:
yong-wang@ntu.edu.sg.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.

In the field of single-cell RNA sequencing (scRNA-seq), constructing
cross-sample cell developmental trajectories is a crucial analytical task
that helps reveal the progression of cells through multiple develop-
mental stages [57]. These trajectories provide insights into cellular
differentiation, thereby advancing our understanding of biological de-
velopment [47], disease progression [28], and targeted therapy [63].
The construction process typically involves two key phases: first, es-
tablishing cellular trajectories merely within single biological sample
and then linking these trajectories across multiple samples to reveal
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cross-sample trajectories. While current computational tools like Mon-
ocle [7] and PAGA [61] have automated the first phase by effectively
modelling intra-sample cellular dynamics, they lack capabilities for
cross-sample connection. Consequently, biologists often make every ef-
fort to manually connecting these trajectories between samples, which
is subjective and prone to errors.

Specifically, constructing and exploring cell developmental trajecto-
ries across multiple samples presents significant challenges. Currently,
biologists must manually analyze which cell populations share the same
expressed genes and connect them, thereby creating a many-to-many
mapping problem that complicates the analytic task. Additionally,
experts need to assess the spatial distribution correspondence of cell
populations in these trajectories, which is complicated by their variable
distributions across samples. Consequently, it is difficult to identify
developmental continuities and biological evolutionary relationships of
these trajectories accurately, which highlights the need for automated
tools to improve the reliability of cross-sample trajectory connections.

However, developing such tools requires resolving two critical as-
pects. First, developing a computational model that integrates multi-
dimensional cellular features, such as gene expression, spatial corre-
spondence, and cross-sample dynamics, is essential for predicting devel-
opmental trajectories between cell populations across samples. More-
over, it is particularly challenging for a model to capture cross-sample
dynamics due to its computational complexity. Second, biologists need
to manually understand and refine model predictions to validate their
biological evolutionary relationships, requiring the integration of origi-
nal single-cell data with model outputs. The spatiotemporal complexity
of the single-cell data and the large number of connections between
different samples often make this task multifaceted.

To tackle the above tasks, we propose TrajLens, a visual analytics sys-
tem with a computational model that assists biologists in predicting and
exploring cross-sample cell developmental trajectories. Firstly, we con-
struct a GNN-based model that comprehensively captures cross-sample
cellular developmental features, including cellular spatial distributions,
gene expression profiles, and cross-sample dynamics, to predict poten-
tial developmental trajectories for multi-sample scRNA-seq datasets.
Secondly, TrajLens enables users to explore predicted trajectories and
validate their biological evolutionary relationships through interactive
explorations, where users can analyze cellular spatial distribution pat-
terns, developmental directions, and the functions of expressed genes
along these trajectories. Finally, we quantitatively evaluated our pro-
posed model on three multi-sample scRNA-seq datasets, demonstrating
its effectiveness in predicting cross-sample cellular developmental tra-
jectories. We also conducted two case studies and expert interviews to
validate the effectiveness of our system qualitatively.

In conclusion, the contributions of our work are:
• Problem formulation and design requirements for defining and

analyzing cross-sample cell developmental trajectories.

• A GNN-based model to predict cross-sample trajectories by cap-
turing cross-sample cellular developmental features.

• TrajLens, a visual analytics system for exploring and identifying
biological evolutionary relationships of the predicted trajectories.

• Quantitative evaluation of our model’s performance and quali-
tative validation of our system’s effectiveness through two case
studies and interviews with eight experts.

2 RELATED WORK

In this section, we summarize the prior work related to our research on
cell developmental trajectory inference tools, single-cell data visualiza-
tion, and spatiotemporal data visualization.

2.1 Cell Developmental Trajectory Inference Tools

Methods for constructing cell developmental trajectories based on
scRNA-seq data, known as “pseudo-time” analysis, temporally or-
der cells within individual samples by comparing gene expression
patterns and assign pseudo-time values to individual cells [40]. Tools

like PAGA [61] build graph-based trajectories, with nodes as cell clus-
ters and edges as developmental paths. DTFLOW [57] uses feature
decomposition and reverse search, while VeloViz [3] integrates scRNA-
seq data and RNA velocity data [35] . However, these tools limit in
cross-sample trajectory construction, as they primarily rely on single-
sample analysis and fail to capture multi-dimensional features like
spatial dynamics and gene expression across samples. Consequently,
there is a need for a specialized tool to construct and analyzing complex
cross-sample developmental trajectories.

2.2 Single-cell Data Visualization
Single-cell data, primarily scRNA-seq, captures individual cell charac-
teristics [50], often integrated with spatial transcriptomics and protein
expression data for comprehensive cellular state analysis. Current
scRNA-seq data analytical tools like Seurat [23] and CellRanger [18]
provide visualization for dimensionality reduction, cell clustering, and
differential gene expression analysis. In addition, some tools explain
complex cell dynamics through specialized visualizations. For ex-
ample, Cellchat [27] maps intercellular communication networks via
ligand-receptor interaction matrices, and PAGA [61] visualizes develop-
mental trajectories as graph structures. Visual analytics tools enhance
single-cell data exploration by integrating additional metadata, such
as temporal dynamics [38], spatial contexts [43], and multi-modal
datasets [26, 29]. For instance, MulteeSum [38] supports comparisons
across multiple samples over time series. Visinity [43] incorporates
spatial information to help users understand the positional relationships
of cells within tissues. Additionally, some tools leverage user inter-
actions to improve data exploration accuracy. Polyphony [13] uses
user-selected anchors to refine dataset alignment. LineageD [25] assists
users in constructing cell lineages, enhancing the precision of lineage
mapping tasks. However, critical challenges persist in cross-sample tra-
jectory analysis, as current tools struggle to integrate and track cellular
state changes across multiple samples and time points, underscoring
the need for advanced tools to address these limitations.

2.3 Spatiotemporal Data Visualization
Spatiotemporal data encompasses entities with inherent spatial and
temporal dimensions [21], enabling the study of dynamic systems
like biological trajectories [16], environmental transitions [42], and
urban dynamics [39] . Spatiotemporal visualization tools typically
address domain-specific needs. For geospatial-temporal phenomena,
GeoChron [68] presents the evolution of geographic entities over time
with the combination of maps and narrative timelines. BNVA [59]
optimizes bus routes by discovering passenger flow patterns and com-
paring characteristics of different routes. UcVe [67] assists users in
comparing multiple visualized geographic units within spatiotemporal
space. Additionally, spatiotemporal visualization is also used to explore
relationships between entities and model relational dynamics. MoRe-
Vis [17] visualized moving entities to facilitate analysis applications
in fields such as climate science. SpreadLine [34] focuses on dynami-
cally illustrating influence within egocentric networks by employing a
storyline-based design to represent entities with their evolving relation-
ships. Wallner et al. [56] utilized storyline techniques to integrate the
development of entity relationships over time and geographical trajecto-
ries in MOBA games to facilitate game replay analysis. Spatiotemporal
data visualization can also be applied to analyze and compare cell
spatial distributions across multiple biology samples, thereby facilitat-
ing the exploration of how cellular patterns dynamically change and
develop over both time and space. However, current spatiotemporal
visualization methods have limitations in effectively integrating dis-
crete biological events with continuous spatial dynamics, which calls
for a visual analytics system that integrates multi-dimensional data
and supports interactive temporal-spatial linking to enable biologists to
validate the biological evolutionary relationship of cross-sample cell
developmental trajectories more accurately.

3 DESIGN

In this section, we introduce the problem formulation of our research,
as Fig.2 shows. We also detail the collaboration process we adopted



Fig. 2: We define the evolutionary relationships between cells across samples as cross-sample cell developmental trajectories. Next, we abstract the
dataset into a graph, with each sample as a subgraph forming the whole graph, and refer to sequences of cross-subgraph links as paths.

with experts during the design process as well as the specific analysis
tasks we identified to guide our system design effectively.

3.1 Terminology Definitions
Single-cell RNA sequencing (scRNA-seq) is a widely used technique
for detecting and quantifies messenger RNA (mRNA) [24, 52], the
transcriptional product of DNA [9], within individual cells, thereby
helping biologists understand gene expression patterns [1]. ScRNA-seq
datasets typically consist of multiple biological samples (Fig.3(A)),
representing the gene expression profile of a single cell [48]. Common
analytical methods include clustering [62], cell-cell communication
analysis [33], and developmental trajectory inference [61]. A cell de-
velopmental trajectory refers to the path that a cell population follows
from an undifferentiated state to a differentiated one [49] (Fig.3(B)).
Since real-time tracking of all cells across continuous time points is
experimentally impractical, current trajectory inference methods sim-
ulate a “pseudo-temporal” timeline by sorting cells based on gene
expression similarity [57], allowing researchers to infer the develop-
mental sequence and identify key cell types involved in biological
processes [58].

3.2 Problem Formulation
Based on the above definitions, we model cell developmental trajec-
tories as graphs from multi-sample scRNA-seq datasets, with nodes
as cell types and edges as cell developmental trajectories (Fig.3(C)).
Cross-sample developmental trajectories for specific cell populations
were defined and unified into cross-sample edges (Fig.3(D)).

Graph Construction. Our scRNA-seq datasets consist of multiple
samples representing different developmental stages of a biological
subject, with each sample tied to a specific stage, though stages may
include multiple samples. Collaborative discussions with biologists,
revealed that developmental trajectories within samples are often ab-
stracted as graph structures [57]. Inspired by this, we formally built
a global graph G = (V,E) to depict a complete cell developmental
trajectory. The vertex set V can be represented as:

V =
k⋃

s=1
V (s), where V (s) = {v(s)i }.

Here a vertex vs
i represents cell population i (identified by annotated

cell names) in sample s. And the edge set E can be defined as:

E = {e | e = (v(p)
i ,v(q)j ) , stage(p) ̸= stage(q)},

where stage(p) denotes sample p’s developmental stage, ensuring edges
only connect cell populations from temporally distinct stages.

Path Definition. To comprehensively characterize cellular differ-
entiation dynamics across samples and developmental stages [15], we
formally defined a developmental trajectory as a temporally ordered
sequence of cell type progressions, represented as:

Tc1c2...cm+1 = [csa
1

e1→ csb
2

e2→ . . .
em→ csc

m+1],

where cs
i represents a cell type i in sample s, and ei represents a develop-

mental trajectory between cell types ci and ci+1. As several trajectories
may share the same cell-type sequences but originate from different
samples, we defined a cross-sample cell developmental path as a col-
lection of trajectories with identical same cell-type sequences across
different samples (e.g., cs1

1 →cs2
i2 →cs3

i3 and cs1
i1 →cs4

i2 →cs5
i3 ) :

Pc1c2c3 = {T (1)
c1c2c3 ,T

(2)
c1c2c3 , · · · ,T

(n)
c1c2c3},

where n represents the frequency of the paths, i.e., the number of
distinct sample combinations supporting the same cell type sequence.

3.3 Design Process
We closely collaborated with six biologists (E1-E6) with varying years
of experience across specialized fields. Specifically, E1 and E2 special-
ize in bioinformatics, with 7 and 4 years of experience, respectively.
E3 has 5 years of experience in microbiology, and E4 brings 5 years
of expertise in cell biology. E5 and E6 are medical researchers with
experience in using bioinformatics tools, possessing 4 and 5 years of
research experience. All participants have experience using tools to
analyze scRNA-seq data by conducting cell developmental trajecto-
ries. We conducted at least two rounds of systematic interviews with
each expert, obtaining insights into their workflows and the challenges
they encountered in studying cell developmental trajectories. This
collaboration ensures that our systems are aligned with the needs of
the biological field, while the diversity of expert backgrounds helps
mitigate bias arising from individual perspectives.

3.4 Analysis Tasks
Based on interviews with six experienced biologists, we have summa-
rized five key analysis tasks (T1 - T5) that users need to explore when
investigating cross-sample cell developmental trajectories.

T1 Select a specific cell type for analysis based on its temporal
occurrence. Domain experts emphasized that selecting a core cell
type for cross-sample developmental trajectory analysis should
prioritize cell types persisting consistently across multiple devel-
opmental stages. Their consistent presence across stages suggests
they play critical roles in biological development, thereby deter-
mining them as key candidates for further investigation.

T2 Identify high-frequency predicted cell developmental paths
related to the selected cell type. After selecting a core cell type,
biologists aim to identify high-frequency developmental paths
connecting it to other cells undergoing critical dynamics, such as
those that emerge, disappear, or experience quantitative changes
during key developmental stages. As E2 noted, such cells are
central to driving biological processes, as their temporal dynamics
often reflect pivotal mechanisms: “Cells that emerge or disappear
during key developmental processes typically play important roles
in shaping the underlying mechanisms.”

T3 Assess cell developmental paths based on cellular spatial con-
tinuity. Biologists assess the spatial continuity and directional



consistency of cellular populations along developmental trajecto-
ries to validate their evolutionary relationships and dynamic behav-
iors. As noted by E4, “Trajectories with biological evolutionary
relationships typically maintain spatial continuity between early
and subsequent cell populations.” By integrating these spatial and
directional features, biologists can enhance the understanding of
the biological evolutionary relationships of these paths.

T4 Examine original samples as context information. For validated
developmental paths, each of them typically encompasses multiple
trajectories. Due to sample-level differences, such as developmen-
tal stages or cell scale differences, developmental trajectories may
exhibit differences in gene expression. Therefore, experts need to
select multiple trajectories within each path to determine if they
exhibit consistent or divergent patterns.

T5 Identifying differentially expressed genes in specific trajecto-
ries and their biological functions. Experts select multiple tra-
jectories within each path to examine gene functions separately, as
different trajectories may exhibit distinct gene expression patterns.
Specifically, in bioinformatics practices, identifying differentially
expressed genes (DEGs) is a pivotal approach to delineating the
genetic foundations of cell developmental trajectories [65]. To
achieve this goal, biologists typically utilize statistical methods [6]
and gene annotation databases [53] to uncover the biological pro-
cesses in which these DEGs are involved.

4 DATA PROCESSING

In this section, we introduce our data processing workflow, which ana-
lyzes multi-sample scRNA-seq datasets and predicts cross-sample cell
developmental paths (Fig.3). Firstly, we collected three multi-sample
scRNA-seq datasets, preprocessed them following biological practices,
and constructed them into graphs ((Fig.3(A))). Secondly, we imple-
mented a GNN-based model and conducted training and prediction
phases ((Fig.3(B, C))). Subsequently, we filtered predicted edges ac-
cording to specific biological criteria and identified high-frequency
paths ((Fig.3(D))). Finally, we provided a comprehensive summary of
paths, including path overviews and gene function analysis ((Fig.3(E,
F))). Through these steps, TrajLens provides a complete workflow for
processing and analyzing multi-sample scRNA-seq data, enabling biol-
ogists to better understand the dynamic changes in cell development.

4.1 Dataset

Datasets Description. We collected a multi-sample scRNA-seq dataset
for the following analysis process, referred to as Mouse-Embryo
Dataset, whose detailed descriptions are provided in Supplement Mate-
rials. Each sample in the dataset contains a gene expression matrix and
single-cell-level metadata . In the gene expression matrix, each row
corresponds to a unique single cell, with each column representing a
gene type and the values indicating the expression levels of a specific
gene within the cell. Additionally, the single-cell-level metadata in-
cludes spatial coordinates of every single cell (i.e., x and y coordinates
in a two-dimensional plane) for describing its extract position within
the sample. Furthermore, cells are annotated by their cell types, such
as neuronal progenitor cells, endothelial cells, and many others.

Dataset Preprocessing. For each dataset, we normalized the ex-
pression values of each sample [70] and employed the widely-used
bioinformatics tool Harmony [32] to mitigate technical variations across
multiple samples. For each sample, we constructed a graph-based repre-
sentation Gsub =(V,Enone) to model cellular relationships, where nodes
v ∈V correspond to annotated cell types. Notably, edges Enone in each
graph were not predefined, as we will construct a model to predict
them. We also stored metadata for each node, including a set of differ-
entially expressed genes and spatial coordinates of all cells within the
node, which provides critical biological context for downstream anal-
ysis. Finally, we construct a global graph G = {G(1)

sub,G
(2)
sub, · · · ,G

(s)
sub}

composed of multiple sample-specific subgraphs Gsub.

4.2 Model Setup
Adoption Rationale. Existing methods, such as PAGA and linear
models, fail to adequately capture implicit semantic relationships [10],
such as node appearance/disappearance events and cell gene expression
profiles. Consequently, they face challenges in effectively performing
cross-sample cell developmental trajectory prediction. Consequently,
they limit in predicting cross-sample cell developmental trajectories
effectively. In contrast, the Graph neural network (GNN) architec-
tures [44] excels at preserving both node-level features and complex
topological relationships [22], making them particularly suitable for rep-
resenting dynamic cellular development. Consequently, we conducted a
GNN-based model that effectively models the spatiotemporal dynamic
graph structure of our multi-stage cellular development dataset.

Training Data Construction. We constructed a graph as training
and testing data based on Dataset 1 using the PAGA algorithm, where
nodes represent cell populations [54] and edges denote connections
inferred by PAGA. Moreover, as the model must not only capture the
graph structure, i.e., the nodes and edges generated above, but also
characterize node features, including gene expression profiles and cell
distribution patterns, we define features for each node. Specifically,
we first identified the top 20 differentially expressed genes (DEGs) for
each cell population through the Wilcoxon rank-sum test [60]. This
choice of 20 DEGs is a commonly used approach and has been demon-
strated to distinguish between cell types effectively [69]. We first
embedded these DEGs into 1024-dimensional semantic embeddings
using the pre-trained model BioLinkBERT [64]. Simultaneously, we
performed Principal Component Analysis (PCA) [41] on the spatial
coordinates of cell populations, which can be represented as an N ×2
matrix containing (x,y) coordinates for N cells, and reduced them to
1024-dimensional vectors enabling comprehensive analysis of cellular
features and differentiation trajectories across samples.

Model Construction. Specifically, our model integrated two com-
ponents: a two-layer Graph Attention Network (GAT) [55] module
with multi-head attention for modelling inter-cell interactions and a
two-layer Graph Convolutional Network (GCN) [30] module for global
topological edge propagation. Through residual connections, we fused
local attention patterns and global structural information, enabling com-
plementary optimization of both modules. The model inputs a graph
where each node has a 2048-dimensional feature embedding and out-
puts probabilistic predictions of edges. By testing different thresholds
ranging from 0.5 to 0.9 on the test dataset, we found that the highest
precision was achieved at a threshold of 0.75. Consequently, edges
with probabilities greater than 0.75 are treated as existing, thereby
constructing the predicted cell developmental trajectories.

Model Training and Predicting. To enhance model robustness dur-
ing training, we generated negative sample edges in each training epoch
and implemented batch shuffling to prevent overfitting. After model
training, we used the graphs constructed in Section 4.1 that only con-
sist of nodes without edges as input data and employed the optimized
weight parameters from the training process to predict edges. All mod-
els are trained and evaluated using PyTorch on a 48-GB NVIDIA RTX
4090 GPU, for 100 epochs with a batch size of 8. The model has ap-
proximately 1,000,000 parameters and is optimized with AdamW [37]
at an initial learning rate of 1×10−5.

4.3 Cross-sample Developmental Path Refinement
Based on trajectory predictions generated by our proposed GNN-based
model, we integrated subgraphs for each sample with predicted edges
to construct a comprehensive directed graph Gpred = (V,Epred). Each
node v ∈ V contains metadata such as cell type name, sample ori-
gin, temporal developmental stage, differentially expressed genes, and
spatial coordinates of each single cell. The directed edges e ∈ Epred
symbolize predicted developmental trajectories based on their origin src
and terminus dst, which were filtered out under biological and temporal
constraints to ensure that they represent cross-sample developmental
trajectories: edges between different cell types type(esrc) ̸= type(edst)
and those directed from earlier to later stages stage(esrc)< stage(edst).
Based on filtered edges, we merged redundant edges with identical
source-target pairs by counting their occurrences, defining the merged



Fig. 3: The data processing and analyzing workflow of TrajLens is as
follows: Each sample of our multi-sample scRNA-seq datasets is repre-
sented as a matrix containing cell and gene information with single-cell-
level metadata describing cellular characteristics. We then abstracted
the dataset into a unified graph structure, where each sample forms a
subgraph collectively integrating into a large graph. Next, we conducted a
GNN-based model to predict links between subgraphs, i.e., cross-sample
cell developmental trajectories. Then, we identified high-frequency devel-
opmental paths composed of multiple cell types for user selection. We
computed a summary overview for each selected developmental path
and provided gene function analysis along specific paths.

edge weights as the count of original edges:

w(u → v) = |{e ∈ E f iltered | src(e) = u∧dst(e) = v}|,

where w represents the weights of the merged edge, quantifying the
total count of original edges that were combined.

Given the high density ρ =
|E|

|V |(|V |−1) ≈ 50% of the initial graph
which was biologically suboptimal because the densely connected
graph tends to contain substantial noise edges while obscuring critical
biological signals [5]. To mitigate this, we retained only the top 15%
most frequent paths, reducing the analysis complexity. The threshold
selection aligned with typical biological practices in single-cell data
analysis, retaining 5% to 15% of high-confidence features for core
analysis [66]. For the user-selected key cell type, we conducted a
breadth-first search (BFS) on Gpred to trace its ancestral and descendant
cell populations along developmental trajectories. We then constructed
a hierarchical tree rooted at the key cell type, with each node recording
its topological distance from the root and its relationship as either an
ancestor or descendant. Multiple cell types in the tree constitute a
cross-sample cell developmental path.

4.4 Path Summary Computation
To help biologists understand the spatial distribution characteristics of
cell developmental trajectories more intuitively, we generated detailed
contour maps for each cell population along the developmental path
to visualize their global spatial distribution patterns. We also provided
a similarity metric between contour maps to identify cell populations
with similar spatial distributions. Additionally, we derived cell devel-
opmental directions from spatial density gradients to reveal potential
cellular evolutionary trends during cell development.

Contour map computation. With the spatial range of a specific
sample, we created a 100×100 grid and used Gaussian Kernel Density
Estimation to compute the probability density distribution of grid points
based on the spatial distribution of cells within the sample. Then,
we generated polygonal contours for predefined thresholds using the
Marching Squares algorithm [36] and simplified these contours using
the Douglas-Peucker algorithm [11]. The contour coordinates were
projected onto the x- and y-axis and binned into 100 histogram intervals
weighted by their occurrence frequency on these axes. To provide users
with a spatial reference for cell contours, we utilized the Alpha Shape
algorithm [12] to generate geometric shapes that capture the biological
boundaries of biology samples and extract the x and y coordinates of
these shapes.

Contour similarity computation. When calculating the similarity
of given two distribution contours C1 and C2 from cell type pairs,
we bidirectionally computed the minimum point-wise distances in
both directions: dC1→C2 and dC2 → dC1 . For each point pi in contour
C1, we computed the minimum distance to each point in contour C2:
dpi→C2 = minq j∈C2

∥∥pi −q j
∥∥. The overall distance dC1→C2 is then

obtained by taking the mean of all point-wise minima:

dC1→C2 =
1

|C1|

|C1|

∑
i=1

dpi→C2 .

The symmetric spatial overlap Dsym is then defined as the reciprocal of
the mean bidirectional distances:

Dsym =
2

dc2→c1 +dc1→c2

.

Higher Dsym values indicate more significant similarity between the
two contours, while lower values reflect distribution differences. This
metric quantitatively compares spatial characteristics across cell types.

Cell developmental direction computation. Subsequently, we
applied Principal Component Analysis (PCA) to identify the primary
developmental directions of the contour map for each cell. Specifically,
the input to PCA consisted of the set of two-dimensional coordinates
(x,y) of each cell and the output provided the primary developmental
direction of the cell’s contour map, which was quantified with a range
[0,2π] and calculate the stability ratio as follows:

Rstd =

√
λ2

λ1 +λ2
,

where λ1 and λ2 represent the eigenvalues of the primary and secondary
components, respectively. The value Rstd close to 0 indicates high
stability in the developmental direction of a specific cell.

4.5 Gene Function Analysis
We analyzed gene functions of cell developmental trajectories using
Gene Set Enrichment Analysis (GSEA) [51] combined with the Gene
Ontology (GO) database [2, 53]. Specifically, we constructed a hier-
archical network of GO terms based on the GO database using GOA-
TOOLS [31], mapped genes based on their mapped genes to their func-
tional terms via mouse Gene Association File (GAF) annotations [4].
For a specific developmental path, we used a statistical test method [31]
to assess the enrichment of GO terms in the target gene set (highly
expressed genes of specific cell types) relative to the background gene
set (highly expressed genes of all samples), identifying overrepresented
biological functions of these genes based on the GAF file.

5 SYSTEM

In this section, we introduce the visual designs of TrajLens. Within our
analytical workflow, users first select core cell types based on temporal
occurrences and population dynamics of cells in the Core Cell Selection
View (T1). Subsequently, TrajLens presents other cell types predicted to
have potential developmental trajectories related to the core cell types
in the Path Selection View, where users can further select multiple cell
combinations as candidate paths for comparative analysis (T2). Then,



users can evaluate the biological evolutionary relationships of these
paths through multi-row visualization with cellular spatial distribution
in the Path Summary View (T3). Additionally, they can delve into the
trajectories constituting specific paths in the Trajectory Inspection View
(T4) and utilize the Gene Function View to analyze the enriched gene
functions presented in these trajectories (T5).

5.1 Cell Developmental Path Selection

Users determine paths for comparative analysis in two steps: first,
selecting core cell types based on temporal occurrences and popula-
tion dynamics (T1); then, selecting cell types predicted to have devel-
opmental relationships with the selected cells, forming multiple cell
combinations as candidate paths for exploration (T2).

5.1.1 Core Cell Selection View

To help users select core cell types based on their temporal occur-
rences and quantitative changes during biological development, we
propose the Core Cell Selection View (Fig.1(A)). The Core Cell Se-
lection View combines a tabular layout with line charts, where each
row displays a cell type’s name along with its quantitative changes and
occurrence points across developmental stages. The horizontal axis of
each row’s line chart represents different developmental stages, and the
vertical axis represents the quantity of cells. In addition, each cell’s
color in the Core Cell Selection View corresponds to the standardized
color-encoding defined in the original dataset, where cell types are
consistently assigned specific colors based on their biological classifica-
tion (e.g., muscle cells in red ( ), bone cells in green ( )) to maintain
consistency with prior studies. 1 Users can identify cells of interest
by examining their presence and quantity changes over developmen-
tal stages. Cells existing along the shown developmental stages are
typically selected as cells of interest for further investigation.

5.1.2 Path Selection View

Upon selecting a core cell type, users aim to explore sequences involv-
ing more than two types of cells relevant to the selected cell, which is
defined to cell developmental paths in Section 3.2.

Description. When selecting candidate cell developmental paths,
users typically prioritize those with high frequency. To address this
requirement, we design the Path Selection View (Fig.1(B)), which
supports filtering and visualizing high-frequency cell developmental
paths while enabling intuitive selection and analysis of paths of inter-
est. Given that the data involving the selected cell of interest and its
neighboring cells forms a hierarchical structure (Section 4.3), where
multiple developmental paths share common cell types and diverge at
these shared cells, we adopt a hierarchical tree visualization for Path Se-
lection View to present the relationships between paths and their shared
nodes explicitly. The view places the core cell types as the root node
(Fig.1(B1)), with adjacent columns presenting cells having predicted
paths leading to it. Nodes in each column represent individual cell
types, and links connect nodes across adjacent columns, indicating pre-
dicted cell developmental paths. To emphasize high-frequency paths,
users can click the “Filter” button to exclude paths with frequencies
less than a specific threshold, thereby focusing on more representative
developmental paths. Additionally, the vertical order of nodes within
each column is determined by the number of paths connected to them,
which aligns with the users’ requirement to explore cells that play
pivotal roles in diverse developmental processes.

Interaction. When hovering over a node in the Path Selection View,
users can access a line chart about the temporal occurrence and quantity
changes of the corresponding cell type through a tooltip (Fig.1(B2)).
Leveraging the tooltip, users can select multiple cells that emerge or
disappear during development or show substantial quantity changes to
form a developmental path. TrajLens will then automatically check for
connections between the selected nodes. If the path is valid (i.e., all
consecutive nodes are connected), it will be incorporated into the list
for inspection in the following process. After selecting all desired paths,

1https://db.cngb.org/stomics/mosta/spatial/

users can click the “Explore” button, and our system will proceed with
further in-depth analysis of these paths.

5.2 Cell Developmental Path Inspection
Biologists need to validate the biological evolutionary relationships un-
derlying the selected developmental paths in Section 5.1.2 by assessing
cellular spatial distributions across them (T3). To facilitate this task,
we propose the Path Inspection View, featuring multi-row visualiza-
tion for comparing spatial overlap and development trends among cell
populations from multiple samples, along with an aggregated overview
for intuitive comparison. Additionally, to refine the analysis of cell de-
velopmental trajectories constituting specific paths (T4), we introduce
the Trajectory Inspection View for analyzing trajectories constituting
specific paths, supporting the following gene function analysis.

5.2.1 Path Inspection View
The Path Inspection View consists of multi-row visualizations, where
each row represents a selected developmental path, with the summary
visualization for each row offering an overview of the path. Addition-
ally, the similarity visualization is above the multi-row visualization to
illustrate the similarity of node contour maps within a column.

Description. The Path Inspection View employs a node-link diagram
to represent cells within the selected paths with cellular spatial distribu-
tion (Fig.4(A)). Each row of this view corresponds to a selected path in
Section 5.1.2 (Fig.4(A)), where nodes correspond to cell types in the
path (Fig.4(A6)) and edges depict predicted developmental trajectories
with their color intensity and height encoding the similarity between
consecutive cells’ spatial distribution (Fig.4(A8)). We visualize the
overall distribution of each node through layered contour maps: the
outer contour represents 98% core density coverage, while the inner
contour shows 94% density (Fig.4(A7)), which enables researchers to
simultaneously capture the most concentrated core and the broader
distribution of cell populations. The color intensity of these contours is
scaled to reflect the corresponding density coverage, providing a visual
hierarchy of cell distribution. All sequences are spatially aligned based
on the user-selected core cell to ensure cross-row consistency. To ad-
dress the limitation that the Path Inspection View alone cannot provide
an overview of a sequence’s overall characteristics, we introduce the
summary visualization of each row. Within each summary visualiza-
tion, central dots represent the centroid of each cell population with
their radius indicating the average cell count in samples (Fig.4(A4)).
Fan-shaped arcs around the dots encode the primary developmental
direction of the cell population through the central angle, and angu-
lar span reflects their directional variance computed in Section 4.4
(Fig.4(A5)). Additionally, we design a multi-projection visualization
(Fig.4(A3)) that orthogonally projects the spatial distributions of each
node onto the x- and y-axis and then stacks them sequentially. The
innermost projections represent the leftmost node in the path, and sub-
sequent projections expand outward to indicate the nodes’ order in the
path. Each row also features a bar chart where the width and color
intensity indicates path frequency (Fig.4(A2)) and a button to the left to
the view opens a Trajectory Inspection View in a new tab upon selecting
and leads to the following analysis(Fig.4(A1)).

Interaction. Upon selecting a row by clicking the leftmost button
(Fig.4(A1)), we present the similarity visualization for each node of the
selected path and other nodes in the corresponding column by bar charts
above the Path Inspection View (Fig.1(C1)). The vertical order of the
bars matches the vertical order of the nodes in the column, facilitating
users to identify and select additional paths similar to the selected ones.

Design alternative. During the iterative design process, we refined
Path Inspection View based on user feedback. Initially, we integrated
the Path Selection View and the Path Inspection View into a hierarchical
tree visualization with contour maps for each node that presented cell
type relationships and spatial distributions (Fig.4(C)). However, while
effective for exploring cell relationships, this approach is limited in a
detailed comparison of divergent branches. Furthermore, a node in this
view may represent the same cell type from multiple paths, potentially
originating from different sample sets, complicating the clear repre-
sentation of a single node. Therefore, we separated the hierarchical

https://db.cngb.org/stomics/mosta/spatial/


Fig. 4: The design of the multi-row visualization in Section 5.2: (A) A row in the Path Inspection View represents a cell developmental path defined in
Section 3.2. (B) The Trajectory Inspection View supports the detailed inspection of the developmental trajectories that constitute the path in (A). (C)
The design alternatives of this view integrates the Path Selection View and Path Inspection View .

tree from comparison views, allowing clearer comparison of different
paths in the Path Inspection View and preserved the hierarchy-based
exploration of cellular relationships in the Path Selection View.

5.2.2 Trajectory Inspection View
Selecting a row in Path Inspection View opens a new tab displaying
Trajectory Inspection View, which, like Path Inspection View, includes
multi-view and summary visualization components. Each node in the
Trajectory Inspection View (Fig.4(B)) corresponds to the cell distribu-
tion map of a single sample (Fig.4(B4)).

Description. For summary visualization, we marked the centroids
of cell populations with dots, where the dot positions represent spatial
centroids and their sizes encode population counts (Fig.4(B3)). Ad-
ditionally, Additionally, we projected the spatial distributions of cell
populations onto the x- and y-axis as density profiles (Fig.4(B2)).

Interaction. By clicking the button on the left side of the specific
row (Fig.4(B1)), TrajLens will automatically conducts gene function
analysis based on the gene set of this trajectory and present the analysis
result in the Gene Function View in a table format.

5.3 Gene Function View
The Gene Function View presents the results of gene function analysis
in table formats(T5) (Fig.1(D)). The results include the GO term ID,
GO term description, and corresponding p-value, indicating the gene
function’s significance. To highlight significant functions, rows with
p-values less than 0.05 are marked in green. When users expand a row,
Gene Function View will present a list of all genes associated with the
selected GO term, facilitating further analysis based on this gene list.

6 CASE STUDY

We conducted two case studies by recording the exploring process
of two interviewed experts, E1 and E5, using our system, and then
summarized their insights to demonstrate the practicality of our system.

6.1 Case Study I: Exploring Cross-sample Developmental
Paths in Mouse Embryonic Development Dataset

As an expert in bioinformatics, E1 used TrajLens to explore the cross-
sample cell development paths related to the brain cell type and investi-
gate the gene functions underlying these paths.

Selecting the Core Cell Type (T1). Among the line charts of
multiple cell types in Core Cell Selection View (Fig.1(A)), E1 identified
distinct patterns of cellular dynamics throughout developmental stages
in Dataset 1. Many cell types exhibited transient emergence, appearing
only at specific developmental stages (e.g., AGM cells ( ) transiently
emerged at the first two embryonic days to generate stem cells), making
them less informative for analysis. In contrast, the line chart depicting

the emergence of brain cells ( ) exist throughout all developmental
stages (Fig.1(A1)) in the Core Cell Selection View suggesting they may
play a crucial role in nervous system formation. Consequently, E1
selected the brain cells as the core cell type for in-depth exploration.

Selecting Cross-sample Cell Developmental Paths (T2). After
selecting the brain cells as the core cell type, Path Selection View
presented all associated cell types hierarchically, including direct pre-
cursors and successors as well as indirectly linked cells (Fig.1(B)).
E1 filtered out paths with frequencies less than 40 to reduce analysis
complexity, as low-frequency paths were less likely to be involved in
critical developmental processes. Based on their ranking in the column
and temporal occurrence and quantity changes shown in tooltip line
charts (Fig.4(B2)), E1 selected cells such as the Notochord ( ), Choroid
plexus ( ), and Dorsal root ganglion ( ), etc.Their tooltip line charts
spanning only specific stages suggest these cells may differentiate into
other cell types or originate from them and are more likely to participate
in brain-related developmental processes. Some highly ranked cells
in their columns, such as Cartilage ( ), were not selected due to their
persistent presence without significant changes. This approach focused
on dynamically changing cell types with potential critical functions.

Inspecting Cross-sample Cell Developmental Paths (T3). E1 ana-
lyzed paths formed by the selected cell types based on frequency, as
indicated by the bar chart width to the left of each row in the Path Inspec-
tion View. Path#2 showed the highest frequency (Fig.4(C3)), indicating
its prevalence and suggesting it might represent a key developmental
path in embryonic development. Additionally, Path#2 exhibited opti-
mal alignment in cell spatial distribution across nodes, with the contour
projections of its three cell types showing significant overlap on both
the x- and y- axis in the summary visualization (Fig.4(C4)). Moreover,
the similarity of spatial distribution in Path#2 is further supported by
the color intensity and height of the links between each pair of nodes
(Fig.4(C5)). The path also presented consistent directionality, as seen
from the uniform direction of arcs surrounding each dot in the sum-
mary visualization (Fig.4(C4)). Based on these observations, E1 chose
Path#2 for further investigation. Upon clicking the left-most button
of Path#2, a new tab opened in the Path Inspection View, displaying
the list of cross-sample trajectories constituting Path#2 in Trajectory
Inspection View (Fig.4(C2)). Moreover, E1 noticed that the cell types of
Path#3 showed significant similarity to those of Path#2 by the width
and color intensity bar charts on the top of each column (Fig.4(C1)),
suggesting potentially related developmental processes.

Gene Function Analysis (T4, T5). When exploring the cross-
sample trajectories (Fig.4(C2)), E1 found that Path#2.13 exhibited the
highest alignment in cellular distribution, as indicated by the most con-
sistent contour projections on the summary visualization (Fig.4(C2)).
Therefore, Path#2.13 was selected for gene function analysis. The re-
sults highlighted significant gene functions in neuronal apoptosis (e.g.,



Fig. 5: Identifying cell developmental branches in Case Study II. (A) The
Core Cell Selection View presents RGC ( ), GABA NeuB ( ), and GlioB
( ) across three stages: Day 12 to Day 16. The quantity of RGC began to
decrease at D14, while the quantities of GABA NeuB and GlioB increased
from D14. (B) The Path Selection View shows the predicted links related
to RGC, indicating a potential branch relationship between these three
cell types. (C) The Path Inspection View presents cell distribution along
Path#1 and Path#2, confirming their spatial proximity. (D) The Gene
Function View reveals similar gene expression profiles for the two paths,
confirming their branching evolutionary relationship.

GO:0000122) and cell proliferation control (e.g., GO:0042127), sug-
gesting its potential role in brain specialization (Fig.1(D)). Conversely,
Path#2.8 and Path#2.15 had few or even no enriched gene functions,
indicating Path#2.8 represents an early phase of brain development
while Path#2.15 resides closer to the developmental starting point.

In this case, E1 explored cross-sample cell developmental paths
associated with brain cells and identified paths that exhibit biological
evolutionary relationships through spatiotemporal patterns.

6.2 Case Study II: Identifying Cross-sample Cell Develop-
mental Branch Patterns in Mouse Midbrain Dataset

E5, a medical expert who specializes in neurology and frequently uses
bioinformatics tools for scRNA-seq data analysis, utilized TrajLens to
study mouse neural development in Dataset 2.

Identifying Cell Developmental Branches (T1, T2). Firstly, E5
observed the quantity of RGC ( ) decreased at Day 14 while GABA
NeuB ( ) and GlioB ( ) increased from Day 14 to Day 16 (Fig.5(A))
through corresponding line charts. Selecting RGC, E5 found multiple
predicted links from RGC to GABA NeuB and GlioB in Path Selection
View (Fig.5(B)), suggesting RGC may differentiate into GABA NeuB
and GlioB simultaneously. Moreover, E5 observed similar contour
maps (Fig.5(C3, C4)) and similar direction of arcs surrounding dots
corresponding to GABA NeuB and GlioB (Fig.5(C1, C2)), which repre-

sents the similar developmental directions among these two cell types
and supported RGC differentiation into GABA NeuB and GlioB.

Validating Cell Developmental Branches (T3, T5). To test this
hypothesis, he conducted gene function analysis in Gene Function View
on two trajectories of these paths Path#1.2 and Path#2.2. The results
revealed that the gene functions expressed in both paths were highly
consistent, primarily focusing on cytoplasmic translation (GO:0002181)
and ribosomal small subunit biogenesis (GO:0042274) (Fig.5(D1, D2)).
These gene functions are closely associated with the rapid proliferation
of neural cells, thereby further supporting the hypothesis that RGC
differentiates into both GABA NeuB and GlioB.

In summary, E5 discovered that a cell type RGC can differentiate into
two distinct cell types, GABA NeuB, and GlioB, during the midbrain
development of mouse embryos. He further verified the biological
significance of this developmental path in terms of gene function, in-
dicating that differentiation patterns are not limited to a one-to-one
relationship but extend to multiple cell types.

7 EVALUATION

In our evaluation process, we first conducted a multi-metric quantitative
analysis to assess the performance of our proposed GNN-based predic-
tive model and then validated the practical usefulness and effectiveness
of TrajLens through qualitative expert interviews.

7.1 Model Evaluation
We conducted ablation studies to validate the effectiveness of each
module in our model and performed comparative experiments to es-
tablish its superiority over existing methods. We also tested the time
consumption of our model in completing common tasks to prove its
efficiency and hyperparameter settings to prove the rationality of our
hyperparameter choices, with details provided in Supplement Materials.

Experiment setup. In our ablation study, we isolated two key mod-
ules of our model: GAT and Fusion. Specifically, we replaced the GAT
with a GCN to assess the benefits of attention-based aggregation and
replaced the Fusion module into a weighted summation module to ex-
amine its impact on feature integration. To demonstrate the superiority
of our proposed model in our specific application domain, we com-
pared its performance against standard GAT [55] and GraphSAGE [20]
models. We utilized the Mouse-Embryo Dataset used in prior analyses
and two multi-sample scRNA-seq datasets, Zebrafish-Embryo [14] and
Schiebinger2019 [45]. Additionally, we utilized two widely adopted
GNN benchmarks, CoraFull [46] and CiteSeer [19], to ensure the gen-
eralizability of our model. Details about the datasets is provided in
Supplement Materials. We computed the accuracy (ACC) metric and
conducted five repeated experiments to obtain the standard deviation.

Evaluation Criteria. For the Mouse-Embryo dataset, we collabo-
rated with domain experts to annotate 118 labels for cross-sample cell
developmental trajectories, which served as the reference background.
In the case of the Zebrafish-Embryo and Schiebinger2019 datasets,
we adopted their inherent differentiation trajectories as ground truth.
As for the CiteSeer and CoraFull datasets, their original graph struc-
tures served as ground truth. Then, we separately apply our model to
edge-less graphs extracted from datasets to predict missing edges.

Results. Table 1 presents the evaluation results of our proposed
model on five datasets and averaged over five independent runs, demon-
strating its superior performance. Notably, the model achieves an
accuracy of 88.56±1.46 on the Mouse-Embryo dataset, aligning well
with expert expectations for accuracy. Ablation studies confirm that
the full model outperforms its ablated variants, while comparative ex-
periments show it surpasses baseline models. Additionally, on the
CiteSeer and CoraFull datasets, our model exhibits robust performance,
highlighting its strong generalization across large-scale datasets. In
summary, our model’s accuracy meets user requirements across diverse
datasets while demonstrating robustness and effectiveness.

7.2 Expert Interview
To validate the usefulness and effectiveness of TrajLens, we conducted
a semi-structured interview with six domain experts over 70 minutes.
These experts included the four E1-E6 introduced in Section 3.3 and two



Table 1: The evaluation results of our proposed model on five datasets and 5 runs.

Dataset Our Model Our Model - GAT Our Model - Fusion GraphSAGE [20] GAT [55]

Mouse-Embryo [8] 88.56 ± 1.46 85.72 ± 0.69 87.83 ± 0.46 88.42 ± 0.18 87.73 ± 0.91
Zebrafish-Embryo [14] 76.91 ± 0.25 75.12 ± 0.64 75.81 ± 0.42 74.42 ± 0.80 76.62 ± 0.33
Schiebinger2019 [45] 71.98 ± 1.49 70.75 ± 0.54 71.16 ± 1.16 70.26 ± 1.59 70.99 ± 1.81
CiteSeer [19] 81.53 ± 0.36 80.59 ± 1.12 80.87 ± 0.54 79.39 ± 1.38 80.16 ± 1.63
CoraFull [46] 88.40 ± 0.37 87.51 ± 1.38 88.23 ± 0.88 87.50 ± 1.45 87.42 ± 1.46

Bold indicates the best performance; underlined indicates the second-best.

additional experts E7, E8 from different institutions who had experience
using tools to construct cell developmental trajectories based on scRNA-
seq data. We first introduced the background of our research (15
minutes), followed by an introduction to the dataset used and the usage
step of our system (15 minutes). Then, we asked the experts to complete
the exploration process for both Dataset 1 and Dataset 2, with each
task requiring at least 20 minutes. Finally, we had a semi-structured
interviews with them to collect their feedback (20 minutes).

Usefulness. E1 to E4 acknowledged that the data processing and
workflow of TrajLens align with the conventions of biology field. Our
workflow follows standardized biological analysis practices for con-
structing cell developmental trajectories, analyzing cell developmental
paths, and identifying enriched gene functions. Our innovation lies
in introducing a graph-based prediction model that can capture and
preserve the non-linear structure and dynamics of scRNA-seq samples.
As E2 noted: “GNN propagates messages through edges to capture
both local cell characteristics and global inter-sample patterns”. More-
over, by integrating cellular features, inter-cellular relationships, and
cross-sample heterogeneity, our proposed model effectively bridges
local details with a global perspective, thereby significantly enhancing
predictive accuracy. Additionally, our system enables biologists to
construct developmental trajectories and interpret their biological rela-
tionships through multi-dimensional evidence, such as gene expression
patterns, cell-cell links, and cellular spatial distribution dynamics.

Visualization and Analytical Strengths. All experts praised the
visualization design of TrajLens as a key strength. The Path Selection
View, which extracts high-frequency paths into a hierarchical tree struc-
ture, was highlighted by E4 as: “This structure improves the readability
of complex trajectory networks by presenting cell relationships with
frequency and distance to the core cell. Moreover, it also displays
characteristics of entire high-frequency paths, helping me understand
developmental relationships and their significance.” The contour map
abstraction and multi-row layout significantly enhance cross-sample
analysis by enabling multi-dimensional comparisons of cell populations
in a path. As highlighted by E5: “This approach facilitates the identifi-
cation of cell populations related to specific tissues while supporting
both horizontal and vertical comparisons.” Specifically, horizontal
comparisons reveal cellular changes across different developmental
paths, while vertical comparisons highlight variations in cell distri-
butions at corresponding positions within diverse trajectories. “This
dual-axis analytical framework provides a comprehensive view of cellu-
lar dynamics and differentiation patterns”, noted by E7. The summary
visualization for each row, achieved through the projection of cell states
onto x- and y-axis and the summary of distribution maps, enables users
to compare cellular patterns across paths intuitively. Such an overview-
to-detail analytical framework provides a comprehensive understanding
of cellular dynamics and differentiation patterns.

Suggestion. E5 suggested incorporating a pseudo-time ordering al-
gorithm [57] to calculate the direction of cellular development, thereby
identifying the developmental direction of specific cell types more
clearly. This would facilitate users in assessing the continuity of devel-
opmental directions among multiple cells. Additionally, E3 suggested
that the system should support the selection of multiple core cell types
for comparative analysis, thereby revealing interaction patterns associ-
ated with these different core cell types. E2 proposed that the system
can directly provide differential gene expression analysis results for
each path, enabling rapid identification of key differentially expressed
genes and supporting hypothesis validation in exploration processes.

8 DISCUSSION

In this section, we discuss the implications of our designing process,
the stability of our Path Inspection View, the generalizability of our
proposed workflow, and the limitations and future work of our system.

Design Implications. Our workflow abstracts complex biological
subjects into computable structures for analysis. First, cell developmen-
tal trajectories are presented as graphs, where nodes represent specific
cell populations and edges represent cell developmental trajectories,
which enables the prediction of cross-sample cell developmental tra-
jectories based on GNN. Second, spatial distributions of cells from
multiple samples are simplified into contour maps highlighting key
features such as density peaks, tissue boundaries, and overlapping re-
gions while facilitating cross-sample comparisons. These abstractions
convert biological data into computable formats such as graphs and
maps, providing an intuitive analysis workflow and visualization that
facilitates users’ understanding of these complex datasets.

Scalability. For analyzing cross-sample cell developmental trajec-
tories, we used the Mouse-Embryo dataset, which spans a few de-
velopmental developmental stages. Due to its temporal resolution,
predicted paths of the dataset are typically four steps or shorter. To
address more complex scRNA-seq datasets, we collected two large-
scale datasets Zebrafish-Embryo and Schiebinger2019 to evaluate the
model’s scalability. Additionally, we validated the model’s general-
izability using widely used GNN benchmark datasets CiteSeer and
CoraFull. TrajLens currently implements multi-row visualization for
analyzing cross-sample cell developmental trajectories. Considering
longer or more paths, TrajLens allows users to explore by scrolling
horizontally or vertically. Additionally, our system supports sorting
multiple developmental paths by their frequency, enabling users to
quickly identify high-frequency paths and improve analysis efficiency.

Limitations and Future Work. Currently, the limited publicly
accessible multi-sample scRNA-seq datasets restrict our ability to ex-
plore various relationships across samples. To address this, we can
incorporate heterogeneous samples from diverse origins to enhance the
robustness of our system, such as those describing the same subject
but originating from different datasets (e.g., samples from different
laboratories or batches of the same disease). In addition, we identified
that the cell contour estimation based on Gaussian Kernel Density Esti-
mation generated density estimates that exceeded the actual distribution
boundaries of the samples, especially in sparse regions or at the edges.
This limitation disrupts users’ manual comparison of contour overlaps
across samples, leading to misinterpretations of cell distribution over-
laps. To mitigate this, we plan to implement overlay scatter plots of raw
cell distributions as reference layers to help users distinguish between
“true” and “estimated” contour regions.

9 CONCLUSION

We introduce TrajLens, a visual analytics system with a GNN-based
model to assist biologists in predicting and exploring cross-sample
cell developmental trajectories for multi-sample scRNA-seq datasets.
Our proposed multi-row visualization with contour maps facilitates the
validation of biological evolutionary relationships of candidate paths
through the overview of cellular spatial distributions. To assess the
performance of our model and the effectiveness of our system, we
conducted a quantitative evaluation of our model’s performance and
performed qualitative validation of our system’s effectiveness through
two case studies and interviews with eight experts.
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