
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 1

AdaVis: Adaptive and Explainable Visualization
Recommendation for Tabular Data

Songheng Zhang, Haotian Li, Huamin Qu and Yong Wang

Abstract—Automated visualization recommendation facilitates the rapid creation of effective visualizations, which is especially beneficial
for users with limited time and limited knowledge of data visualization. There is an increasing trend in leveraging machine learning (ML)
techniques to achieve an end-to-end visualization recommendation. However, existing ML-based approaches implicitly assume that there
is only one appropriate visualization for a specific dataset, which is often not true for real applications. Also, they often work like a black
box, and are difficult for users to understand the reasons for recommending specific visualizations. To fill the research gap, we propose
AdaVis, an adaptive and explainable approach to recommend one or multiple appropriate visualizations for a tabular dataset. It leverages
a box embedding-based knowledge graph to well model the possible one-to-many mapping relations among different entities (i.e., data
features, dataset columns, datasets, and visualization choices). The embeddings of the entities and relations can be learned from
dataset-visualization pairs. Also, AdaVis incorporates the attention mechanism into the inference framework. Attention can indicate the
relative importance of data features for a dataset and provide fine-grained explainability. Our extensive evaluations through quantitative
metric evaluations, case studies, and user interviews demonstrate the effectiveness of AdaVis.

Index Terms—Visualization Recommendation, Logical Reasoning, Data Visualization, Knowledge Graph.

✦

1 INTRODUCTION

DATA visualization has become increasingly popular in data
analytics and insight communication. It is common to create

visualizations for tabular datasets in various domains, including
investment, sales, engineering, education, and scientific research [1],
[2], [3]. However, creating compelling visualizations requires
expertise in data visualization and relies on manual specifications
through either programming or mouse interactions (e.g., clicking
and dragging, and dropping). The visualization tools can gener-
ally be categorized into two types: visualization packages (e.g.,
ggplot2 [4], Vega [5], D3 [6], and Prefuse [7]) and visualization
software (e.g., Tableau 1 and Microsoft Power BI 2). The former
needs users to do programming with different languages (e.g.,
Python, R, Java, and JavaScript), and the latter often asks users
to manually drag and drop and specify the mapping between data
and visual encodings. As a result, it is often complicated and
time-consuming for common users without a background in data
visualization to generate effective visualizations.

Automatic visualization recommendation techniques have been
proposed to make the visualization creation process more acces-
sible and more efficient [8], [9], [10], [11], [12]. Among them,
the machine learning (ML) based visualization recommendation
approaches have become popular in the past few years. They
are often data-driven and implicitly model the mapping between
datasets and appropriate visualizations. Compared with other rule-
based visualization recommendation techniques (e.g., APT [13],
Show Me [14] and SeeDB [15]), the ML-based approaches have the

• S. Zhang and Y. Wang are with the School of Computing and Information
Systems, Singapore Management University, Singapore. Y. Wang is the
corresponding author. E-mail: {shzhang.2021, yongwang}@smu.edu.sg.

• H. Li and H. Qu are with the Hong Kong University of Science and
Technology E-mail: haotian.li@connect.ust.hk, huamin@cse.ust.hk. This
work was done when Haotian Li was a visiting student supervised by Dr.
Yong Wang at Singapore Management University.

1. https://www.tableau.com/
2. https://powerbi.microsoft.com/en-us/desktop/

advantage of being an end-to-end visualization recommendation
without specifying heuristics, and there have been an increasing
number of research studies to achieve better visualization recom-
mendations by leveraging machine learning techniques [16], [17],
[18], [19].

Sex Grade

Male 3.4

Female 4.0

Female 3.75

Male 3.75

Male 4.0

Female 4.0

Male 2.8

Male 3.8

A B C

Figure 1. A dataset regarding students’ grades in a class. The dataset
can be visualized in a bar chart or a box plot.

However, existing ML-based visualization recommendation
approaches suffer from two major issues: adaptability and explain-
ability. First, the ML-based approaches implicitly assume a one-to-
one correspondence between datasets and visualizations by training
on dataset-visualization pairs. However, it does not always hold in
real applications. For example, as shown in Figure 1, the dataset
that contains students’ grades over a course can be visualized as
either a bar chart showing the average grades of female and male
students or a boxplot displaying the grades distribution of female
and male students. Both visualizations are suitable in terms of
visual encodings and the optimal choice can be either of them,
depending on users’ preferred level of details of GPA distribution.

According to our survey, no existing ML-based approaches can
adaptively recommend multiple appropriate visualizations for a
dataset. Existing ML-based approaches often recommend the only
one visualization choice [1], [8], [10], [20], not adaptive to different
datasets. Second, most ML-based approaches (e.g., Data2Vis [8]
and VizML [10]) are built upon deep neural networks. For instance,
a three-layer fully connected neural network is employed in

ar
X

iv
:2

31
0.

11
74

2v
1

 [
cs

.H
C

]
 1

8
O

ct
 2

02
3

https://www.tableau.com/
https://powerbi.microsoft.com/en-us/desktop/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 2

v

v

Column A Column B

3000 259

4243 267

4325 238

3255 249

4321 254

A Feature Extraction

Column A

Column B

Dataset

SFA

SFA

…

SFB

SFB…

CF

CF

…

X-Axis

Y-Axis

Chart

B Modal Structure

v

v

v

v

Single -Column
Features A

Single -Column
Features B

Cross -Column
Features

E Explanation
Cross -column data are significantly

correlated and fit linear regression.

D Adaptive Recommendation

C Inference

Line

Scatter

Dataset

1

1

1

1

Figure 2. The workflow of AdaVis recommendation consists of Feature Extraction, Model Structure, Inference, Explanation Generation and Adaptive
Recommendation. A delineates that AdaVis extracts cross-column and single-column features from a dataset; B displays the structure of the
AdaVis: it uses extracted features to infer appropriate visualization choices; C illustrates the inference details: the visualization types within a box
are identified as visualization type recommendations for the dataset; D displays the multiple appropriate visualization types for the dataset; E
illustrates that AdaVis provides an explanation for the recommendation results.
VizML [10] to predict the axis encodings and visualization types
for a dataset. These approaches work as a black box and can
undermine users’ trust in the visualization recommendation results,
especially for general users without a background in visualization
and deep neural networks. A recent study, KG4Vis [20], presents a
knowledge-graph-based approach to recommend visualization in
an explainable manner for tabular datasets. But their explanations
are built on single-column features and can only indicate which
single-column features account more for a visualization type,
which is called global interpretation [21]. The global interpretation
captures the overall relationship the model learned from all datasets,
identifying which feature values are strongly associated with
specific visualization types. However, KG4Vis neglects cross-
column features and fails to provide a fine-grained explanation
for each unique dataset. The local interpretation [21] that focuses
on explaining a particular visualization recommendation for an
individual dataset is still missing

In this paper, we propose AdaVis, an Adaptive and Explainable
Visualization Recommendation approach for tabular data through
logical reasoning over knowledge graphs. Inspired by KG4Vis [20],
our approach also leverages a knowledge graph to model the
relations between different entities involved in visualization
recommendation (Figure 2 A B), e.g., data features, dataset
columns, datasets and visualization design choices. The relations
in the knowledge graph define the correspondence between two
different types of entities. For example, “(a dataset) is visualized
by (a visualization choice)”. Such relations intrinsically specify
the inference rules in visualization designs. However, instead of
employing the widely-used vector embeddings [20], [22] to indicate
the inference results, we adopt box embeddings [23] that essentially
allow the visualization recommendation results to cover multiple
appropriate visualization choices for a given dataset (Figure 2 C).
The incorporation of box embeddings leads to better adaptability
for visualization recommendation, enabling AdaVis to adaptively
recommend an appropriate number of visualization choices based
on the characteristics of a dataset. Also, we have incorporated an
attention mechanism into AdaVis, which assesses the importance
of different features for visualization recommendations [24]. This
mechanism works over the knowledge graph, ensuring that our
recommendations (Figure 2 D) are informed by relevant data
features. Moreover, AdaVis offers fine-grained explanations for
the visualization recommendations for a specific dataset (local
interpretation) by tracing the importance of data features along

inference paths, thereby improving the interpretability of our
recommendations. The explanations (Figure 2 E) are natural
language (NL) sentences automatically generated from rule-based
templates.

We extensively evaluated the effectiveness and usability of
AdaVis by using the dataset-visualization pairs collected by Hu
et al. [10]. We first quantitatively compared AdaVis with other
state-of-the-art baseline approaches in terms of visualization rec-
ommendation accuracy. Then, we showed a gallery of visualization
recommendation results and the corresponding natural language
explanations to demonstrate the adaptability and explainability
of AdaVis. Further, we conducted user interviews to invite both
data visualization experts and common users to verify whether the
recommended visualizations are meaningful and align well with
their domain knowledge of visualization design requirements and
whether explanations regarding these recommendations are correct.

The paper’s main contributions can be summarized as follows:

• We propose AdaVis, an adaptive and explainable visu-
alization recommendation approach for tabular data via
knowledge graphs. It adaptively recommends multiple
appropriate visualizations for a specific dataset, better
modeling the real visualization design process. Also, it
can provide fine-grained explanations for different datasets.

• We extensively assess AdaVis through quantitative metric
comparisons with other baseline approaches, qualitative
case studies, and user interviews. The results demonstrate
the effectiveness and usability of AdaVis in providing
adaptive and explainable visualization recommendations.

2 BACKGROUND: BOX EMBEDDING IN KNOWL-
EDGE GRAPHS

Knowledge Graphs and Relations. A knowledge graph models
human knowledge as a directed graph with entities and relations.
Each entity is a graph node, and each relation is a graph edge.
The relationship between any two entities is delineated by a triple
(h,r, t), where h represents a head entity, t represents a tail entity,
and r represents a relation. Most relationships in a knowledge
graph are 1-to-1 mappings, with the relation r between the head
entity h and the tail entity t being unique. For example, “US has a
citizen named Bob” is an example of the 1-to-1 relation, as shown
in Figure 3(c), and the corresponding triple is (US, Has Citizen(s),
Bob). Besides, there are 1-to-N relations in a knowledge graph.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 3

t2

h1

t1

t2

t1h1

h2

Has
Employee(s)

Has
Employee(s)

Amazon

Amazon

Has
Citizen(s)

US

Alice

Alice

Bob

Bob

(a) (b)

(c)

C3 t2

h1
C1

C2

t1

h2

h1

t2
c

t1 Offset

Max

Min

Figure 3. Illustration of the box embedding two operations: projection
and intersection in a knowledge graph (a, c) and vector space (b, d),
respectively. h1 and h2 are the head entities representing a company
Amazon and a country US, respectively. Similarly, t1 and t2 are tail entities
representing two individuals in a KG. The red and green arrows are
different relations between head entities and tail entities. Additionally,
h and t are entities’ vector forms in the vector space. Besides, C
denotes the center of the box. Offset represents the box range, thereby
determining the box’s size. Max and Min are the endpoints of the box’s
diagonal. (a) displays a 1-to-N relation triple in which Amazon (h1) has
employees named Alice (t1) and Bob (t2). (b) demonstrates the 1-to-N
triple computation in the 2-D vector space by the projection: the relation
(Has Employee(s)) projects the head entity into a box that contains the
tail entities. (c) indicates the intersection of two 1-to-N triples where Bob
(t2) is an employee of Amazon (h1) and a citizen of US (h2). (d) shows
the box intersection in the 2-D vector space: two boxes’ intersection gives
rise to a smaller box that contains a tail entity (t2) relevant to both two
triples. Otherwise, the irrelevant tail entity (t1) is outside the smaller box.
The center C3 of the smaller box is based upon the two projected box

centers C1 and C2 .

For instance, “Amazon has employees Alice and Bob” represents
a 1-to-N relation. Figure 3(a, c) delineates the 1-to-N relation,
where there are more than one tail entities (i.e., Alice and Bob)
for the same head entity and relation. The triple is (Amazon, Has
Employee(s), {Alice, Bob}).

Box Embedding. To facilitate computational manipulations
on knowledge graphs, it’s often necessary to apply Knowledge
Graph Embedding (KGE) to represent entities and relations in KGs
as continuous embedding vectors [25]. For the 1-to-1 relations in
knowledge graphs, there have been many KGE methods to model
them, e.g., TransE [26] and PTransE [27]. However, they cannot
model the 1-to-N relations that entail a set of tail entities as shown
in Figure 3(a). Also, these methods cannot be used to define the
intersection of multiple 1-to-N triples. The intersection of 1-to-N
triples will obtain a set of common tail entities. These common
tail entities are relevant to all these 1-to-N triples. For example,
Figure 3(c) shows the intersection of two triples, where “Bob is
an employee of Amazon and also a US citizen”. To handle these
challenges in a scalable manner, box embedding is introduced
recently [28]. Rather than representing a point in vector space,
it represents an area and can handle 1-to-N relations and the
intersection of 1-to-N relations using two operations: projection
and intersection. The projection operation of box embedding
maps an entity embedding (i.e., a point) to a box area (i.e., axis-

aligned hyper-rectangles) in the vector space (Figure 3(b)). Tail
entities should be enclosed within the projected box and satisfy the
following condition:

Box≡{v∈Rd :Cen(Box)−O f f (Box)⪯ v⪯Cen(Box)+O f f (Box)},
(1)

where ⪯ denotes element-wise inequality, Cen(Box) ∈ Rd

denotes the center point of the box and O f f (Box)∈Rd ≥ 0, which
stands for the positive offset of the box. The offset indicates the
size of the projected box, as shown in Figure 3(b).

The intersection operation of box embeddings models the
intersection of multiple 1-to-N relations by intersecting several
projected boxes. For instance, Figure 3(c) depicts the intersection
of two triples, where h1 and h2 have different relations to t2. The
intersection of two box embeddings projected from h1 and h2,
shown by the small shadowed box in Figure 3(d), identifies the t2
to which both h1 and h2 have relations. t2 is within the intersected
box, indicating that t2 is the tail entities of both two triples.

For visualization recommendations, it is common for a dataset
to be represented as multiple visualizations types, which is a 1-to-N
relation. To model these relations accurately, we utilize box embed-
ding in our approach for adaptive visualization recommendations.

3 RELATED WORK

The related work of this paper can be categorized into three
groups: visualization recommendation, knowledge graph embed-
ding, knowledge graph-based explainable recommendation.

3.1 Visualization Recommendation
Visualization recommendation aims to suggest or generate appro-
priate visualizations for a given dataset automatically and generally
includes two types of methods [16]: Rule-based methods and
machine learning (ML)-based approaches.

Rule-based methods leverage visualization rules specified by
visualization experts to recommend appropriate visualizations [14],
[15], [29]. For example, Mackinlay et al. proposed Show Me,
which can automatically suggest visualizations using predefined
visualization guidelines [14]. Using a predefined set of rules,
voyager [29] and voyager2 [30] enumerates all potential data
columns in a dataset to get potential visualizations and further
ranks all these visualizations to recommend appropriate choices.
Additionally, Foresight [31] detects pre-defined statistical features
from the dataset and then made recommendations according to
these features. and present them visually through appropriate
chart types. Though rule-based methods have been extensively
studied, developing a comprehensive list of rules for visualization
recommendations is challenging, and the maintenance of such
empirical rules is often labour-intensive [20].

ML-based methods learn the mappings between input datasets
and visualizations [16] from training examples. For instance,
Vizdeck [32] trains a linear model for this mapping. DeepEye [33]
uses a learning-to-rank [34] model to rank visualization recommen-
dations, then recommends the top scoring one. Draco [35] employs
the statistical model RankSVM to rank possible visualizations.
More recently, deep neural networks have also been widely
used for visualization recommendations, such as VizML [10],
Data2Vis [8] and Table2Charts [1]. While these ML-based methods
can reduce the manual efforts of compiling rules for visualization
recommendations, they often operate like a black box, making it

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 4

difficult for general users to interpret them [16]. Li et al. [20]
proposed a knowledge graph-based recommendation approach.
Their approach recommends suitable visualization choices in a
data-driven and explainable manner, making it the most relevant
study to our work. However, this approach fails to consider
relationships between data columns in the dataset, which is crucial
for determining visualization choices.

Unlike the above studies, AdaVis takes into account the cross-
column relationships of the input dataset and can provide adaptive
visualization recommendations and explanations.

3.2 Knowledge Graph Embedding
Knowledge Graph (KG) models the relations between different
entities [36], and knowledge graph embedding (KGE) maps
entities and relations into embedding vectors while preserving
their semantic meanings, which mainly includes semantic matching
models and translational distance models [25]. Semantic matching
models evaluate the plausibility of a triple by matching the entities
and relations with latent semantics in the vector space. For example,
RESCAL [37] assigns a vector embedding to each entity in the
knowledge graph, and each relation is interpreted as a matrix that
models the semantic interaction between two entities. Dismult [38]
restricts the relation matrix of RESCAL to multiple diagonal
matrices, thereby simplifying the calculation of RESCAL.

Translational distance models use translation operations to
represent the relations between any two entities, where the distance
between the entity embedding after a translation and the other entity
embedding indicates the plausibility of a triple. TransE [26] is one
of the most representative translational distance methods. When
using TransE, combining the embedding vector of a head entity
with that of a relation creates a new embedding in the vector space
that approximates the tail entity. The limitation of TransE is that
it implicitly assumes that there are only one-to-one relationships
between entities and cannot deal with 1-to-N relationships [39].
Therefore, other methods have been proposed to improve the
modeling of 1-to-N relationships in knowledge graphs [23], [39],
[40], [41]. For example, query2box [23] introduces box embeddings
whereby a head entity embedding can be translated into a box by a
relation embedding. rather than a point in the vector space. When
the embedding vector of a tail entity lies inside the projected box
embedding of a head entity, the corresponding triple is considered
valid, making it able to represent 1-to-N relations.

Our approach is inspired by query2box [23] and incorporates
box embedding in our knowledge graph to model the 1-to-N and
intersection of 1-to-N relations in visualization recommendation.
Also, we augment the original loss function of query2box to
enhance the adaptability of recommended visualizations.

3.3 Knowledge Graph Based Explainable Recommenda-
tion
Knowledge graphs have been integrated into recommendation
systems to enhance their interpretability [36]. According to the
survey by Li et al. [42], the knowledge graph-based explainable
recommendation methods can be grouped into two categories:
internal route-based methods and external route-based methods. For
the internal route-based methods, the recommendation algorithms
are designed by explicitly considering the knowledge graphs,
including their entities, relations, paths, and rules, to improve
the recommendation performance and provide explanations. For
instance, Wang et al. [43] defined the relations between entities as

sequential paths and further leveraged a Recurrent Neural Network
(RNN) to model the sequential dependencies of entities within a
knowledge graph. Also, Ma et al. [44] directly derived recommen-
dation rules from the knowledge graph and recommended items
based on the extracted rules.

In contrast, external route-based recommendation methods are
not built upon knowledge graphs. Instead, they only use external
knowledge graphs to generate explanations for the recommendation
results. For example, the medical knowledge graph has been used to
discover possible explanations for previous medical treatments [45].
Also, Sarker et al. [46] utilized an external knowledge graph to
elucidate the behaviors of neural network classifications.

Our approach falls under internal routes-based recommendation
methods, and integrates a knowledge graph into our recom-
mendation framework. Tracing back paths in the knowledge
graph can provide meaningful explanations for the recommended
visualizations.

Original Dataset

Feature Extraction

SFs

Is sorted

Has outlier

Is Uniuqe

CFs
Datetime-
Numerical

shared
elements

Is correlated

VIS Choice

Type: Line

AxisColA: X

AxisColB: Y

Knowledge Graph

Median
Value

Is
Unique

Is
Sorted

DateTime
- 

 Numerical

Column A

Column B

Dataset

Has
Outlier

Type:
Line

Axis: X

Axis: Y

A

B

C

Figure 4. An example of transforming a dataset into a knowledge
graph. A The dataset contains a pair of tabular data and corre-
sponding visualization. B With feature extraction, the individual data
columns’ characteristics, namely single-column features (SFs) and the
interrelationships of two data columns, namely cross-column features
(CFs) will be obtained, as well as the mapping between the dataset
and visualization choices (VIS Choice). Visualization choices include
the visualization type (e.g., line chart) and the axis (e.g., x-axis). C
The single-column features , cross-column features , data columns ,

datasets , and visualization choices are represented as entities in the
knowledge graph. Only part of the features and entities are shown.

4 OUR METHOD

We propose AdaVis, an adaptive and explainable knowledge-graph-
based approach to recommend visualizations for tabular datasets.
Given that the choice of standard visualization types (i.e., line chart,
bar chart, box plot, and scatter plot) often depends on the two data
columns displayed on the chart axes, we formulate the visualization
recommendation problem for two-dimensional datasets as logical
reasoning over the KG to infer visualization types for two-column
datasets [23], [47]. The source code for our approach is available.

4.1 Overview
When determining appropriate visualizations for a dataset, users
often need to consider the characteristics of two data columns of
interest and their interrelationships. The design of AdaVis is inspired
by the logical reasoning process of humans when they select the
right visualizations. Such a reasoning process is modeled by a
knowledge graph consisting of entities (i.e., single-column features,
cross-column features, data columns, datasets, and visualization
choices). In this paper, we refer to an individual column of a
dataset as a data column. A single-column feature is a quantified
characteristic of a data column. Similarly, a cross-column feature
is a quantified interrelationship between data columns.

https://github.com/AlexanderZsh/AdaVis

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 5

Single -Column Features B

…
Cross -Column Features

…
Single -Column Features A

…

Scatter Plot Line Chart Bar Chart Box Plot

X-Axis Y-Axis

Column A Column B

A

B

C

Figure 5. This figure illustrates the workflow of AdaVis infers appropriate
visualization types. A illustrates that we extract single-column and cross-
column features from a dataset. Each node represents a feature entity.
B describes the procedure for generating data column and dataset box
embeddings in inference. A hollow yellow/orange rectangle represents
a box embedding from a single-column/cross-column feature. A gray
rectangle denotes a data column obtained from an intersection of box
embeddings of single-column features. The brown rectangle represents
the dataset generated from an intersection of box embeddings that
represent data columns and cross-column features. C indicates that box
embeddings of data columns and dataset can infer correct visualization
choices (i.e., axis and visualization types).

AdaVis comprises feature extraction, knowledge graph construc-
tion, box embedding learning, model inference, and explanation
generation for the visualization recommendation, which collectively
facilitate visualization recommendation. Given a corpus of dataset-
visualization pairs, AdaVis can learn the implicit mapping between
datasets and visualization choices (i.e., visualization types and an
axis), which will be further used for visualization recommendations
for new datasets. Specifically, as shown in Figure 4 A and
B , AdaVis extracts related features for columns in a dataset.
Data column features, data columns, datasets, and visualization
choices will be used to construct knowledge graphs (Figure 4 C).
Further, we utilize the box embedding technique [23] to learn the
embeddings of entities in the knowledge graph, which can well
model their relations in visualization recommendations. We will
use the learned embeddings of the knowledge graph’s entities and
relations to infer suitable visualization choices (i.e., visualization
types or an axis) for an unseen dataset. Moreover, a template-
based explanation module, built upon the knowledge graph, is
integrated into AdaVis to generate natural language explanations
for the visualization recommendation.

4.2 Feature Extraction
Visualization choices depend on the characteristics of the input
dataset. To extract quantified characteristics (features) of datasets,
we first surveyed prior studies of visualization recommenda-
tion [10], [32], [33] and visualization insight discovery [48], [49].
Based on the survey results, we categorized the dataset features
into two types: single-column features and cross-column features,
as shown in Figure 4 A and B .

The single-column features describe the properties of individual
data columns, such as the column length, the mean and variance
of a column’s values. We extracted 80 distinct single-column
features that can collectively model the properties of individual
data columns from various perspectives. Besides the 80 single-
column features, we also extracted 40 well-designed cross-column

features in AdaVis by referring to prior studies [10], [33], [48].
The cross-column features capture the interrelationships between
two columns, e.g., two columns’ data types are categorical and
numerical. Such cross-column features are also crucial for deciding
the visualization choices. For example, compared with a line chart,
it is more appropriate to use a scatter plot to visualize a two-column
dataset with two columns exhibiting significant correlation [50].
Furthermore, as shown in Figure 4 B , we obtain the visualization
choices (i.e., visualization types and axes) of datasets. A complete
list of all the features used in AdaVis can be found in the appendix.

4.3 Knowledge Graph Construction

A knowledge graph allows us to model the mapping between
datasets and different visualization choices. With a well-designed
knowledge graph, we can further recommend appropriate visual-
izations.

Definition of Entities. As shown in Figure 4 C , we define
five classes of entities that are encoded with different colors: single-
column features (ESF , yellow nodes), data columns (ECOL, gray
nodes), datasets (EDS, brown nodes), cross-column features (ECF ,
orange nodes) and visualization choices (EV IS, green nodes).

As shown in Table 1, ESF represents features extracted from
individual data columns; ECF are cross-column features; ECOL and
EDS refer to data columns and datasets, respectively; EV IS refers to
the choices available for visualizations, and consists of four popular
charts (i.e., bar chart, line chart, scatter plot, and a box plot) [51].
as well as the two commonly used axes (i.e., the x-axis and y-axis).

Since single-column and cross-column features can be continu-
ous values, we discretize them into different intervals to represent
them as entities in a knowledge graph. Specifically, we utilize the
widely-used MDLP approach [52] to transform continuous features
into categorical features.

Definition of Relations. As illustrated in Table 1, there are five
relations classes in our knowledge graph. (1) RSF→COL denotes
a class of relations that associate single-column features with
single data columns, and this class indicates that these features are
present in a single data column. (2) RCOL→DS represents a class of
relations that link a single data column to a dataset. It shows that
datasets contain the data column. (3) Similar to RSF→COL, RCF→DS
is a class of relations that indicate cross-column features exist in
datasets. For example, RCF→DS means that “(one cross-column
feature) exists in columns of (a dataset)”. (4) RCOL→V IS shows
that single data columns are encoded with a specific axis. For
example, RCOL→V IS means that “(one data column) is encoded as
(x-axis)”. (5) Similarly, RDS→V IS means a dataset is encoded as a
visualization type.

Definition of Triples. After defining entities and relations, we
generate triples based on existing dataset-visualization pairs. These
triples are instances of the defined knowledge graph relations. These
triples can be categorized into two types, 1-to-N and intersection
of 1-to-Ns, as illustrated in Table 1. As shown in Figure 4 C , a
1-to-N triple is constructed by a relation (an arrow) and two types
of entities (two nodes with different colors). It is a 1-to-N triple
(N≥ 1) because one head entity may correspond to multiple tail
entities by a relation. For example, in Figure 4 C , “(Has Outlier
−→ Column B)” denotes a single-column feature (i.e., Has Outlier)
could exist in many data columns (i.e., Column B), so, in a triple,
the single-column feature (i.e., head) may correspond to many data
columns (i.e., tails) by a relation (i.e., RSF→COL). There are five
types of 1-to-N triples since the knowledge graph contains five

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 6

Table 1
The table shows two categories of triples in the knowledge graph: 1-to-N and the intersection of 1-to-N. 1-to-N triples can be classified as five

relations in the knowledge graph. The intersection of 1-to-N triples intrinsically combines multiple 1-to-N relations.

Type Relations Meanings Examples

1-to-N

RSF→COL Data columns with the specific single-
column feature are

The column (COL) length is 50 (SF)

RCF→DS Datasets with the specific cross-
column feature are

Percentage of unique values (CF) shared in a Dataset
’s two columns (DS)

RCOL→DS Data columns in the specific dataset
are

A column representing grades (COL) in a dataset (DS)
about students’ grades (Figure 1 A),

RCOL→V ISAxis The data columns can be encoded on A column represents grade (COL) is encoded on the
y-axis (V ISAxis) in a visualization (Figure 1 C)

RDS→V ISType Visualization types available for the
dataset are

The dataset about students’ grades (DS) is visualized
as a box plot (V ISType) (Figure 1 C)

Intersection
of

1-to-Ns

RSF1→COL ∩ RSF2→COL ∩
·· ·∩RSFn→COL

Data columns with n single-column
features are

A set of columns (COL1 . . .COLn) have the same features
such as column length is 50 (SF1), column values are
sorted (SF2) and so on (SF3 . . .SFn)

RCOL1→DS ∩ RCOL2→DS ∩
RCF1→DS ∩·· ·∩RCFm→DS

Datasets including two specific data
columns and a set of m cross-columns
features are

A set of datasets (DS1 . . .DSn) have the same
characteristics: their columns’ characteristics
((COL11 ,COL12) . . .(COLn1 ,COLn2)) are the same, and these
datasets have the same cross-column features such
as the pairwise columns have overlapping value
ranges (CF1) and so on (CF2 . . .CFm)

types of relation. Besides 1-to-N triples, an intersection of 1-to-N
triples is also generated from the knowledge graph. For example,
in Figure 4 C , a combination of two triples, i.e.,“(Has Outlier
−→ Column B) & (Is unique −→ Column B)”, is an instance of
intersection of 1-to-N triples. The example refers to a set of data
columns with both features (i.e., Has Outlier & Is unique).

4.4 Box Embedding Learning
Box Embedding Learning guides AdaVis to learn possible visualiza-
tion choices for a dataset. As introduced in Section 2, a head entity
and a relation in triples are projected onto a box embedding. For
example, suppose a single-column feature exists in data columns. In
that case, this condition can be regarded as a triple like “(A single-
column feature, Exists in, Some data columns)”. As illustrated in
Figure 5 A and B , the single-column feature (a yellow node) is
projected into a box embedding (a hollow yellow rectangle) and
its tail entities (i.e., data columns have single-column features) are
supposed to lie within the box embedding. Besides transforming
triples into box embeddings, multiple boxes from multiple triples
can be merged to create a smaller box embedding. In Figure 5
B and C , for instance, the box embeddings of columns (gray
rectangles) and a cross-columns feature (a hollow orange rectangle)
are intersected to obtain a smaller box embedding that represents
datasets. The dataset entities with those columns and the cross-
column feature will be inside the dataset box embedding. The
distance between the box and tail entity is defined as:

distbox(t;b) = distoutside(t;b)+α ·distinside(t;b)+β ·bsize, (2)

where b denotes the box embedding from the head and relation
in a triple, and t represents an embedding of the tail entity. The
distbox(t;b) serves as a scoring function that measures the distance
in vector space between the tail entity’s the embedding and the
box embedding. The distance function can be decomposed into
three sub-functions: distoutside identifies whether the tail entity t is
within the box b. If t is inside the box, the score of distoutside is 0.
Otherwise, distoutside returns the distance between the tail entity t
and the close side of the box b. As for distinside, it calculates the

distance between the center of the box b and t (or the distance
between the close side of the box and t if t is outside the box).
The hyper-parameter α ∈ [0,1] controlls the weight of distinside. If
α = 0, distinside is nullified, causing the scoring function to solely
consider the distance of the tails from the box b. Furthermore,,
bsize is designed to control the box size in case the box size is so
large that it includes irrelevant tail entities. Thus, β ∈ [0,1] is a
hyparameter that controls the box size. In summary, distbox(t;b)
aims to measure how far a tail entity is from the box embedding.
distoutside, distinside and bsize are defined as follows:

distoutside(t;b) = ||Max(t −bmax,0)+Max(bmin − t,0)||1 (3)

distinside(t;b) = ||Cen(b)−Min(bmax,Max(bmin, t))||1, (4)

bsize(b) = ||bmax −bmax||2, (5)

where bmax and bmin represent endpoints of the box b, as
delineated in Figure 3(b), Cen(b) denotes the box’s center point.
bsize represents the box size.

In each iteration of model training, we sample a set of positive
and negative triples from the training dataset. In the knowledge
graph, positive triples are the correct triples, while negative triples
are incorrect triples whose tail entities t do not correspond to the
head and relation. For example, (US, Has Citizen, UK) is a negative
sample where the tail entity (UK) is not the answer to the head
entity (US) and relation (Has Citizen). We generate k negative
samples for a positive triple. The positive and negative samples
constitute a minibatch of training samples. In this minibatch, AdaVis
is updated by the calculated loss. The loss function is defined as
follows, according to [23]:

L =−logσ(γ −distbox(b; t))−
k

∑
i=1

1
k

logσ(distbox(b; t ′i)− γ), (6)

where σ is the Sigmoid function, and γ is a fixed scalar margin.
t means a positive tail entity, while t ′i refers to a negative tail entity

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 7

that should be far away from the box embedding b. The intuition
behind the loss function is that the correct answer (positive tail)
should lie inside the box and as close to the box center as possible,
but the incorrect answer (negative tail) should be far away from the
box as possible.

4.5 Model Inference

In the training step, the model learned the embeddings of entities
and relations in the knowledge graph. This section clarifies how
AdaVis uses the learned embeddings to infer axes and possible
visualization types for an unseen dataset.

AdaVis extracts single-column and cross-column features from
the unseen dataset, as illustrated in Section 4.2. Our knowledge
graph contains entities of these features, and the corresponding
embeddings of these features have been learned. Then, these single-
column features are projected to box embeddings, as shown in
Figure 5 A and B . AdaVis further obtains the box embedding of
the data column from an intersection of single-column features’
box embeddings. Each single-column feature represents a particular
characteristic of a data column, so the intersected box embedding
of single-column features represents a data column’s overall
characteristics. Having obtained the data column embedding, we
can infer an appropriate axis for the data column. In the paper,
a dataset includes two columns, and its visualizations are also
two-dimensional, with one x-axis and one y-axis. In other words,
one data column only corresponds to one axis. Due to this fact, we
should determine which axis is best suited to this data column. To
this end, we first infer the axis’ box embedding (BoxAxis) from this
data column’s box embedding (BoxCOL). BoxCOL represents the
data column, and BoxAxis represents the optimal axis to this data
column. The axis embedding (BoxAxis) is obtained from the data
column embedding (BoxCOL) by a relation (RCOL→V ISAxis) which
specifies the transformation from a data column to its optimal
axis. Since BoxAxis represents the optimal axis for this column
and two axis entities (i.e., x, y-axis) exists in the constructed
knowledge graph, we can calculate the distance between BoxAxis
and the embeddings of these two axis entities. The distance
measures the plausibility between the optimal axis and axis
entities, and the axis entities are denoted by EV ISAxis (Table 1).
Additionally. the distance calculation is done by Equation 2. A
lower calculated score means higher plausibility. For example, if
distbox(EV ISx ;BoxAxis)< distbox(EV ISy ;BoxAxis), AdaVis chooses x-
axis for the data column because the data column’s optimal axis is
more plausible to the x-axis entity than the y-axis entity.

As for inferring visualization types to a dataset, we will identify
a set of visualization types that are appropriate to the dataset. Unlike
the 1-to-1 mapping between a data column and an axis, a 1-to-
N mapping exists between a dataset and multiple visualization
types, as multiple visualization types are suitable for the same
dataset (Figure 1). To infer visualization types, we first need to
obtain the dataset representation in terms of box embedding. In
a manner similar to data column embedding obtainment, a box
embedding of the dataset (BoxDS) is gained by intersecting the
box embeddings of its data columns and cross-column features,
as shown in Figure 5 B and C . From the BoxDS, we infer its
optimal visualization types (BoxType) in terms of box embedding
by a relation RCOL→V IStype . Since one dataset may have more than
one suitable visualization type, we need to classify these suitable
visualization types at once. Due to this requirement, Equation 1 is
used to identify which visualization types entities (e.g., line, bar)

are inside BoxType. In other words, if visualization type entities are
appropriate for the dataset, they will be enclosed by the BoxType.

A

B

Has
Outlier

Are
Disordered Column A

Column B

Dataset

w1 = 0.25

w3 = 0.3

w2 = 0.45

Line and scatter are recommended if Column A data values
are arranged in disorder, Column B has outlier in values.
Cross-column data types are numerical-numerical.

Numerical
- 

Numerical

Figure 6. An illustration of explanation generation for a visualization
type recommendation. A a visualization of three paths with quantified
importance for the recommendation result. Each path represents a single-
column feature (yellow) or cross-column feature (orange). Their quantified
importance in the recommendation result is denoted by wi. The wi are
obtained by normalizing their attention scores. Only parts of the paths
are shown. B an explanation for the recommendation. The features are
filled into the explanation template’s slot.

4.6 Explanation Generation
In this section, we will illustrate how AdaVis provides fine-grained
explanations for the recommendation of a specific dataset. As
mentioned in Section 4.5, the procedure of AdaVis inference is se-
quential and follows an inference path, such as {Are disordered}→
{Column A}→ {Dataset}→ {Line, Scatter} (Figure 6 A). The
inference path indicates: If data values are {arranged in disorder}
in {Column A}, then the {Dataset} can be visualized as {Line,
Scatter}. As an inference path from a single-column feature (e.g.,
the column values are not ordered) or a cross-column feature (e.g.,
two data column’s data types are both numerical) to the dataset,
this path contributes to the prediction of the visualization type. To
quantify each path’s importance to the inference result, AdaVis
leverages the attention mechanism in the inference paths [53].
We input box embeddings of single or cross-column features into
a fully-connected neural network (i.e., MLP) and obtain output
values as feature attention scores. The path’s importance to the
inference result is represented by its attention score, as shown in
Figure 6 A . With the quantified importance, we can reversely trace
the important inference paths and reach specific single-column and
cross-column feature entities.

We have developed a rule-based template to automatically
translate important features into natural language sentences. We
designed an explanation template. The template is a pre-defined
sentence with empty slots: ‘[VIS] is recommended if [Column] has
[Single-column features], and Cross-column (i.e., the relationship
between two columns) has [Cross-column features]’. AdaVis
recommends visualization results for the dataset and determines
features that are critical to the final visualization recommendation.
For example, Figure 6 B provides an example of the template
instance where the crucial features (color-filled texts) replace the
slots. Both the recommended visualization types and important
features are filled in on the template. In particular, according to the
principles advised by Yuan et al. [54], we propose detailed rules
for our template to enhance the interpretability of the resulting
explanation for humans. (1) We limit an explanation’s maximum
number of features to four to prevent cognitive overload. Also,
to ensure the features in the explanation are not trivial to the
recommendation result, we filter out unimportant features based

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 8

on their importance scores which are calculated by the attention
score. (2) We also empirically filter out some features which are
statistically informative but could confuse users, such as Moment
9, Gini coefficient, and Kurtosis. (3) We divide numerical features’
semantics into several degrees based on their discretized intervals.
For example, if a single-column feature such as column length
is discretized into two intervals by MDLP, and “a data column
length is equal to 5” is within the lower interval, the column’s
length will be regarded as short. (4) We avoid including categorical
features that have a negative value as they are not relatable to an
understandable concept for users. For instance, “There is no linear
regression” is a negative feature value and does not make sense to
users.

5 EVALUATION

To demonstrate the effectiveness of AdaVis, we extensively evalu-
ated AdaVis with quantitative comparisons, case studies, and expert
interviews. This section introduces the setup of our experiments
(Section 5.1) and the results (Sections 5.2 and 5.3) in detail.

5.1 Experiment Setup
This section introduces the dataset used for evaluation and the
model settings in our experiments.

Corpus. We have used the large-scale corpus of visualization-
dataset pairs introduced in VizML [10] to evaluate the effectiveness
of AdaVis. The VizML corpus is crawled from Plotly Chart Studio 3.
In the corpus, each visualization-dataset pair contains one dataset
and the corresponding visualization created by users.

We first filtered all visualization-dataset pairs with the dataset
consisting of two data columns from the corpus. Then, we retained
four types of visualizations, i.e., bar charts, scatter plots, line charts,
and box plots, since they are commonly used in Plotly [51] and are
standard chart types. Our final dataset consists of approximately
30000 dataset-visualization pairs, which are further randomly
divided into training and testing sets by a ratio of 2:1.

5.2 Quantitative Evaluation
We conducted experiments to evaluate AdaVis quantitatively from
three perspectives: single-class visualization recommendation (i.e.,
an axis and a visualization type), multiple-class visualization
recommendation (i.e., multiple visualization types), and the validity
of cross-column features.

5.2.1 Single-class Visualization Recommendation
We conducted an experiment to assess our method. As mentioned
in Section 4.1, a visualization consists of axes and a visualization
type, so we evaluate AdaVis by carrying out two tasks: (1)
axis recommendation for a data column; (2) visualization type
recommendation for a dataset. Our corpus was collected from
Plotly Chart Studio, where users typically create one visualization
for each dataset. Therefore, the visualization choice is single-class
in the experiment. To be specific, our experiment took one axis and
one visualization type as the ground truth for each data column
and dataset, respectively.

Baseline Models. We compare AdaVis with three baseline
models: KG4Vis [20], GQE [47] and Decision Tree. Among them,
KG4Vis [20] is the most relevant to our approach, as it also employs

3. https://plot.ly/online-chartmaker/

a knowledge graph for recommending visualization choices and
further providing explanations for its recommendations. The scores
attributed by KG4Vis to each visualization choice were derived by
taking an average of the inference results across all columns of a
dataset. Besides KG4Vis, we also compare AdaVis to two other
models: GQE [47] and the Decision Tree approach. GQE is a widely
used model in knowledge-graph recommendation-based tasks [55],
[56], [57], which makes it a suitable baseline to be compared
with our approach. The Decision Tree model is essentially an
explainable ML model and has also been employed in visualization
recommendation [10], [33]. The models in our experiment assign
a score to each visualization option and rank them in descending
order. For this, AdaVis employs Equation 2 to calculate the score.

Metrics. We applied two widely used metrics to evaluate
the performance of our method comprehensively: Mean Rank
(MR) and Hit@2 [26]. MR represents the average ranking of the
correct visualization choices (the lower the MR score, the better
performance), and Hits@2 represents the proportion of correct
visualization choices that rank in the top two inference results (the
higher the Hits@2 score, the better performance). Since the axis is
either the x-axis or the y-axis, we use accuracy to evaluate its binary
prediction (the higher the accuracy score, the better performance).

Result and Analysis. Table 2 shows that AdaVis outperforms
the baseline models in recommending appropriate visualization
types, underscoring the effectiveness of AdaVis. A contributing
factor to AdaVis’s performance is its use of cross-column features
and the intersection of box embeddings which can effectively model
the intersection of all features, which extracts critical insights from
both single-column and cross-column features. These insights are
subsequently employed to recommend suitable visualization types.
As for the axis prediction, Decision Tree marginally surpasses
AdaVis. However, it is important to note that retraining Decision
Tree for different tasks needs an additional computational burden.
In contrast, AdaVis is trained only once for both tasks.

Table 2
The table displays the quantitative result regarding visualization type and

axis recommendation among AdaVis and baseline models.

Axis Visualization Types
Accuracy MR Hits@2

AdaVis 0.8536 1.626 0.8421
GQE 0.8487 1.884 0.7268
KG4Vis 0.7579 1.736 0.8111
Decision Tree 0.8795 1.893 0.7189

Table 3
The table displays AdaVis recommendation effectiveness for multiple

answers.

Visualization Types (Adaptability)
Two Choices Three Choices

Recall Precision F1 Recall Precision F1
AdaVis 0.6084 0.8259 0.6621 0.6147 0.7943 0.6596
GQE 0.4002 0.8005 0.5337 0.2648 0.7743 0.3972
KG4Vis 0.304 0.608 0.406 0.3333 1.0 0.5
Decision Tree 0.4889 0.9778 0.6519 0.3333 1.0 0.5

5.2.2 Multiple-Class Visualization Recommendation
Since each dataset has only the correct visualization type in
the previous experiment, the above experiment results fail to
demonstrate the adaptability of AdaVis. Thus, we further conduct

https://plot.ly/online-chartmaker/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 9

Table 4
The table displays an evaluation of cross-column features’ effectiveness.
Results are compared between models with and without cross-column

features.

Visualization Types (Cross Features)
MR Hits@2

With Without With Without
AdaVis 1.626 1.688 0.8421 0.8298
GQE 1.884 2 0.7268 0.7033
Decision Tree 1.893 1.9086 0.7189 0.7133

experiments in this subsection to evaluate the adaptability of AdaVis
in recommending multiple types of visualizations correctly. A new
test set is necessary, where each dataset has more than one correct
visualization type. Since the continuous features of datasets have
been transformed into categorical by discretization (Section 4.3),
we grouped datasets with the same feature values. The datasets with
the same single-column and cross-column features were regarded
as a group whose visualization types were interchangeable. In
other words, if a dataset is within a group and the group has
multiple visualization types, these types will be considered the
ground truth for the dataset. According to observation, a group of
datasets with the same feature values are seldom visualized using
four visualization types. Hence, we tested AdaVis adaptability with
the groups of datasets whose visualization types are two and three.
We sampled 406 test datasets with two visualization types and
sampled 141 test datasets with three visualization types.

Baseline Models. The purpose of the experiment in this
subsection is to evaluate the performance of AdaVis in adaptively
recommending multiple types of appropriate visualizations. Given
that no existing visualization recommendation approaches are
explicitly designed for such a purpose, we followed the practice
of Section 5.2.1 and also used KG4Vis, GQE, and Decision Tree
as the baseline methods in this experiment. AdaVis can suggest
adaptive visualization types for an unseen dataset as long as the
visualization type entities are within the inference box of AdaVis
(Equation 1). The baseline methods were set to recommend the
visualization type with the highest prediction score, which is also
common practice when they are used in real applications.

Metrics. For the adaptability experiment, we identify the
recommended multiple visualization types based on whether the
visualization type entities are inside the box of model inference
(Equation 1). Since there are more than one ground truth visual-
izations for each test dataset, we used Recall, Precision, and F1 as
the metrics in the adaptability experiment [58]. Recall can evaluate
the model’s adaptability. A high Recall score means the model can
recommend more visualization types suited for a dataset. Precision
evaluates the consistency between the model’s recommendation
results and the ground truth of the dataset. High precision indicates
that models are well aligned with users’ design preferences. F1
offers a comprehensive measurement that considers both Recall
and Precision.

Result and Analysis. Table 3 shows that AdaVis consistently
outperforms the other models in both two and three choices
scenarios as indicated by the highest F1 scores, signifying that
it effectively balances precision and recall. AdaVis also stands out
in terms of recall, suggesting that it can recommend a broad range
of suitable visualization types and shows excellent adaptability. In
the scenarios with three choices, AdaVis’s performance surpasses
all baseline models, further reinforcing its adaptability. Despite

some models achieving higher precision in certain scenarios,
their lower overall F1 scores imply a lack of diversity in their
recommendations. In contrast, AdaVis maintains high precision
across all scenarios, indicating that its recommendations align
well with user selections and can offer a wider range of suitable
visualization recommendations.

5.2.3 Ablation Study about Cross-column Features
In this ablation study, we evaluated the effects of cross-column
features. Given the crucial role of meaningful relationships between
data columns in determining visualization type [29], [59], [60],
AdaVis incorporates cross-column features. To verify the signif-
icance of our cross-column features, we conducted an ablation
experiment. It involves removing the cross-column features from
AdaVis and baseline models, and then assessing whether the
recommended visualizations still align well with human users’
visualization choices.

Baseline Models & Metrics. To evaluate the cross-column
features’ effect, we used the GQE and Decision Tree as the baseline
models. We did not consider the KG4Vis as it does not use the cross-
column features. Additionally, the metrics used in the experiment
are MR and Hits@2.

Result and Analysis. Table 4 displays the effect of cross-
column features on the performance of both AdaVis and the baseline
models in recommending visualization types. In each model, i.e.,
AdaVis, GQE, and Decision Tree, the incorporation of cross-column
features resulted in enhanced performance in terms of MR and
Hits@2 scores. This is evident when comparing these scores with
their counterparts obtained when cross-column features were not
used. This trend underscores the importance of integrating cross-
column features in the process of visualization recommendation.
It suggests that considering the interrelations between columns
(i.e., cross-column features), rather than treating each column in
isolation, contributes to more effective and relevant visualization
recommendations.

5.3 Qualitative Evaluation
To extensively assess AdaVis’s adaptability and understand why
these charts are recommended, we further conducted case studies
and user interviews to examine recommended visualizations and
associated explanations.

5.3.1 Adaptability and Explanation
Figure 7 displays the visualization recommendation results for four
datasets by AdaVis. As introduced in Section 4.6, AdaVis offers
explanations for the recommendation results. These explanations
highlight the features important to the recommendation results in
the understandable language. The following paragraphs describe
multiple recommendations for different sets.

Figure 7 A1 and A2 show that there are two types of

visualizations recommended for a dataset. Figure 7 A3 explains
the recommendation reason. The two columns’ data types are
numerical and datetime (values are related to the date or time).
Additionally, in the y-axis, the numerical values are not arranged
in an orderly manner (e.g., the values of the columns are arranged
in increasing or decreasing order). This implies y-axis values are
fluctuating. Therefore, the bar and line charts are appropriate for
the dataset. The explanation is consistent with existing visualization
guidances. For example, Show Me [14] concludes that a bar chart
can be used with two columns of data, one for categorical (datetime

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 10

Bar and line are recommended if Column A data
values are aranged in disorder ; Cross-column Data
Types are datetime-numercial.

A3

Line and scatter are recommended if
Cross-column data are significantly correlated,
and fit a linear regression model.

Line and bar are recommended if
there is a trend in Column A and
Corss-column data types are
datetime-numer ical.

Scatter and box are recommended if
Cross-column data has different data
distr ibutions, and there exists clusters.

Bar and line are recommended if Column A data
values are aranged in disorder ; Cross-column
data types are datetime-numercial.

Figure 7. The present figures pairs of visualization recommendations for four different datasets. Visualizations in the same column are from the same
dataset. The recommendation results are explained at the bottom of each column. Due to the space limitation, we only describe the top two features
in our explanations to illustrate our recommendations.
can be regarded as categorical value) and another for numerical
columns. Similarly, Munzner [61] indicates that a line chart is often
used to show temporal trends.

Figure 7 B1 and B2 present a line chart and a scatter plot

as recommended visualizations for a dataset. Figure 7 B3 shows
that AdaVis identifies linear correlation among data columns and
further recommends a line chart and a scatter plot to visualize the
given dataset. The explanation is also supported by previous work.
According to Cui et al. [50], a scatter plot is appropriate if there is
a correlation between two columns of the dataset, and line charts
are recommended if the dataset fits a linear regression model with
a low estimated error.

Figure 7 C1 and C2 show that a line chart and a bar chart

are recommended for a dataset by AdaVis. Figure 7 C3 gives the
explanations for these two recommendation results: since there
is a monotonic trend in the dataset, it is suitable to visualize the
dataset using a line chart because the line chart are commonly used
to show the trend [61]; a bar chart is also recommended for the
dataset because it contains categorical and numerical data [14].

Figure 7 D1 and D2 show that a scatter plot and a box plot

are recommended to visualize a dataset. Figure 7 D3 reveals
important dataset features that led to these recommendation results,
i.e., various data distributions and the existence of different clusters.
These explanations also align well with the observations in prior
studies. For example, Cui et al. [50] pointed out that a scatter plot
is preferred if several clusters exist in the dataset. Munzner [61]
mentioned that a box plot is considered to be appropriate for a
dataset with different data distribution across different columns.

These examples show that our explanations for the visualization
recommendation align well with the guidelines in prior studies. It
confirms the correctness of our visualization recommendation and
its adaptability to satisfy the requirements of different datasets.

5.3.2 Cross-column Features

We compared recommendations generated by AdaVis with and
without cross-column features to demonstrate their necessity.
Several recommended visualizations are shown in Figure 8, where
the visualizations on the left are recommended by considering
cross-column features, and those on the right are recommended

With Cross-column Features Without Cross-column Features

A1 A2

B1 B2

C1 C2

D1 D2

Figure 8. The figure displays pairs of visualization recommendations for
four different datasets. A pair of visualization at each row comes from
the same dataset. Visualizations recommended by a model with cross-
column features are on the left side; Recommendations from the model
without cross-column features are on the right side.

without considering cross-column features. To explore how cross-
column features lead to different recommendations, we studied the
explanations regarding cross-column features.

Figure 8 A1 and A2 show that for the same dataset, AdaVis
with cross-column features recommended scatter plot. In contrast,
AdaVis without cross-column features recommended a bar chart. Ac-
cording to the model’s explanation, “there are clusters between two
data columns and columns’ data types are numerical-numerical”.
Since apparent clusters among data columns and two data columns
are both numerical, the scatter plot is appropriate. In contrast, the
bar chart is not suitable for a dataset consisting of two numerical
data columns [14]. Therefore, the inappropriate visualization type is
recommended because it does consider the cross-column features.

As shown in Figure 8 (B1 , B2), AdaVis with cross-column

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 11

features recommended a line chart rather than a bar chart because
“two column data values are significantly correlated, and data types
are numerical-numerical”. The study by Saket et al. [62] indicates
that a line chart is suitable for finding correlation. AdaVis with cross-
column features capture the critical interrelationships between data
columns in a dataset and thus recommend a line chart.

Figure 8 C1 and C2 present a box plot recommended by
AdaVis with cross-column features and line chart without cross-
column features. Based on the corresponding explanation, we
recognized that “Cross-column has a different distribution”. That
important cross-column feature led to the box plot recommendation.

Figure 8 D1 and D2 show a bar chart and a box plot,
respectively. Based on the explanation, the important cross-column
feature in the recommendation is that “two column data types are
categorical-numerical”, and thus recommended a bar chart rather
than a box plot. As established by Mackinaly et al. [14], a bar
chart is well-suited for visualizing data involving two columns
with categorical and numerical values. Therefore, a bar chart is an
appropriate choice for visualizing the dataset. Additionally, this
case illustrates that without cross-column features, AdaVis does not
take the data type of two columns into account, leading to a box
plot recommendation that violates the visualization guidance.

These cases demonstrate the importance of cross-column
features in visualization recommendations. According to our
observations, cross-column features can help AdaVis to exclude
recommendations that violate visual design rules restricted by
cross-column features. Cross-column features can reveal interrela-
tionships between columns. Therefore, it is necessary to consider
cross-column features in recommending appropriate visualizations.

5.3.3 User Interview and Feedback
Our quantitative experiments above demonstrate the effectiveness
of AdaVis in adaptively recommending multiple appropriate visu-
alizations, but it is also crucial to ask actual users to evaluate the
recommended visualizations as well as the natural language expla-
nations provided by AdaVis. Thus, we conducted user interviews
with two distinct tasks, where each is designed to evaluate one
aspect of AdaVis: the adaptability of our recommendations and the
clarity of the generated explanations:

Task 1 Recommendation Adaptability Assessment. Participants
were asked to view the recommended visualizations for ten
randomly sampled datasets with multiple recommended
visualization options. Provided with the tabular dataset,
participants needed to assess and provide feedback on
how well each recommended visualization presented the
original tabular data of the dataset.

Task 2 Explanation Clarity Assessment. Participants were
provided with explanations for the recommendations of
ten randomly sampled datasets. They were then asked to
evaluate whether the explanations helped them understand
the recommendation results. Feedback was requested on
the clarity of the explanations.

For the user interviews, we recruited 12 participants, all of
whom actively use data visualization tools but have varying degrees
of expertise in the field. This allowed us to conduct a thorough
evaluation of AdaVis across a range of user experiences. For our
analysis, we categorized them into two groups. The first group
(E1-E6) is composed of participants who have demonstrated a
high level of expertise in data visualization, evidenced by their
contributions to at least one scientific publication in the field. The

second group (C1-C6) includes participants who regularly use data
analysis tools, such as Excel, and have a fundamental understanding
of data science. The diversity of participants’ backgrounds allowed
us to assess the effectiveness of AdaVis from different perspectives.
Throughout the interview, we encouraged participants to express
their thoughts and feedback in a think-aloud manner.

After finishing the interviews, we analyzed all the feedback
from participants and also categorized participant feedback into two
groups accordingly. We then conducted a thematic analysis [63]
within each group to identify recurrently-raised issues. To highlight
the differences between the two groups’ feedback, we conducted
a cross-comparison of these issues. Consequently, our analysis of
the feedback revealed both convergences and divergences from
the perspectives of data visualization experts and common users,
which are organized and presented as follows:

Recommendations of Multiple Visualization Types. Overall,
all participants found that most of the visualization recommen-
dations by AdaVis are appropriate for the given datasets. For
instance, E3 endorsed the variety in our recommendations: “It
is reasonable to recommend these multiple types of visualizations
for the same dataset. For instance, when examining a trend or
investigating correlations and distributions within a dataset, line
chart, bar chart, and scatter plot can all be used to visualize
the same dataset”. However, we also observed a discrepancy
between these two participant groups. The second group’s (C1-C6)
acceptance rate of visualization recommendations seems to be
influenced by their existing knowledge of data visualization, while
data visualization experts are not. For instance, C1 has never used
a box plot before, and she got confused when she was presented
with a box plot as the visualization recommendations. Similarly, C6
disagreed with some of the recommended line charts for datasets
without a column being the time variable, as she insists that line
charts should be predominantly used for time-series-related data. A
significant suggestion from both groups was to further incorporate
the users’ analytical tasks when recommending appropriate types
of visualizations for a given dataset.

Recommendation Explanations. The clarity of our expla-
nations was confirmed by all the participants regardless of their
familiarity with data visualizations. They pointed out that these
explanations can help them effectively and conveniently understand
why specific visualizations were recommended for a given dataset.
For example, C6 mentioned that the explanations enhanced
her comprehension of the recommended visualization, as they
highlighted the specific features that drove the recommendations.
Nevertheless, we observed that a user’s knowledge level of visual-
ization significantly influences their requirements for explanations.
Users less familiar with data visualization may need more detailed
and contextual explanations of the recommended visualization.
For example, C4 suggested that the explanation should be task-
oriented, displaying a specific scenario, and C2 expressed a desire
for justifications in explanation when his unfamiliar visualiza-
tions are recommended. Conversely, users with more advanced
knowledge, like E2, might prefer an explanation that focuses on
the characteristics of a dataset. This observation underscores the
importance of tailoring explanations to the knowledge level and
needs of individual users to facilitate their understanding and
acceptance of the recommended visualizations. Also, participants
have provided insightful suggestions for further enhancing AdaVis.
For instance, a common suggestion from both groups of participants
was that our explanation should also illustrate why certain types
of visualizations were not recommended beyond only explaining

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 12

why certain visualizations were recommended. More specifically,
E1 advised that AdaVis could incorporate a What-if functionality,
enabling users to discern which features are most influential to
recommendation results. Moreover, some common users (C6, C5)
pointed out that certain terms used in the explanation, such as
“disorder”, should be presented in a more intuitive manner.

6 DISCUSSION

6.1 Lessons

Explanability. Our explanation for visualization recommendations
considers both feature importance and intuitiveness. 120 features
are used in our approach to comprehensively model the char-
acteristics of the input dataset. However, an increasing number
of dataset features can also result in the difficulty of providing
intuitive explanations for the visualization recommendation from
the perspective of dataset features. To strike a good balance between
visualization recommendation performance and explainability, we
integrated an attention mechanism in AdaVis (Section 4.6) that can
identify critical features for the final visualization recommendation
result. Our explanation is built upon the most important two or
three features. For feature intuitiveness, some dataset features are
important for the final visualization recommendation result, but
their meanings are difficult to interpret, especially for statistical data
features (i.e., the entropy is high, Kolmogorov–Smirnov test result
is significant). Given that target audiences comprise common users,
these perplexing features were avoided in the final explanations.

Trade-off in Model Training Strategy. AdaVis performs
two kinds of recommendation tasks: axis and visualization type
recommendation. Since single-column features are required in
both axes and visualization type prediction, the embeddings of the
single-column features are influenced by two tasks about axis and
visualization types recommendation, when we combine the two
tasks for the model to learn; the multi-task learning can introduce
noise because visualization type recommendation visualization is
unrelated to axes prediction. To investigate the effect, we conducted
a control experiment on multi-task and single-task learning; the
model was doing multi-task learning while two separate models
were trained for each task in the control group. According to the
experiment result, training different models for each task led to a
few points of improvement. However, the improvement came at
the cost of double the computation time and storage, because it
needs to train two individual models to do axis and visualization
type recommendation task, respectively.

Feature Importance. AdaVis defines a comprehensive set
of features, including 80 single-column features and 40 cross-
column features, to capture the diverse characteristics of input
datasets. A feature importance analysis revealed that some single-
column features, especially those related to column names and data
column statistical properties, are particularly impactful. Among
these, data column length emerges as a highly influential feature.
The significance of data column length can be attributed to its
role in reflecting data density, which in turn informs the choice of
visualization type. For instance, for a high-density dataset, a line
chart may be more suitable than a bar chart or scatter plot, as it
represents data points in a less cluttered and more understandable
way. Also, our analysis highlights the importance of digits in
column name. This feature carries semantic information about the
data column, which potentially indicates users’ design logic for
visualization. For example, a column named ”Year2017” can imply

the need to visualize a trend over time, while column names such
as ”Method1” or ”Method2” only reveal the need for a comparison.

6.2 Limitations
Corpus. We utilize the dataset-visualization pairs uploaded by
Plotly users as the ground truth, and most visualization choices
of them align well with general visualization design guidelines.
However, there are also a small number of problematic visualization
choices for the input datasets, which may have a negative impact
on the performance of AdaVis. To further bolster the performance
of AdaVis, it is important to expand our corpus with more high-
quality dataset-visualization pairs. For example, we can try to
collect more data visualization examples created by experienced
visualization experts from professional visualization blogs or
forums like Observable4.

Visualization Choices. As an initial step towards adaptive and
explainable visualization recommendation, AdaVis is applied to the
widely-used standard charts in this paper, like line charts, bar charts,
scatter plots, and box plots, and it does not encompass all types of
visualizations. Such a choice originates from both the popularity of
these visualizations [10] and the fact that other visualizations are
scarce in the Plotly corpus. Also, given that these standard charts
have an emphasis on the axes’ visual encodings [10], AdaVis mainly
focuses on recommending appropriate types of data visualizations
and the x/y axes. However, with a new dataset-visualization corpus
of other types of visualizations, AdaVis can be easily extended to
work for new types of visualizations and other detailed visualization
encodings like color schemes.

User-centric Recommendation. AdaVis effectively maps
datasets to visualizations but lacks an explicit consideration of
users’ specific intents, such as their analytical tasks or preferences.
As indicated by user feedback (Section 5.3.3), it will be interesting
to further incorporate user intent in visualization recommendations,
which can ensure that the recommended visualizations align
with the user’s specific needs. In this paper, we demonstrate the
effectiveness of AdaVis by using datasets with two columns, but
AdaVis can also recommend appropriate visualizations for datasets
with more than two columns. It can be achieved by extracting cross-
column features from every possible combination of two columns in
the dataset, and then finding the intersection of these cross-column
box embeddings, which indicate the dataset’s characteristics and
can be further used to derive the appropriate visualization choices.
The possible issue of extending AdaVis to datasets with over two
columns is that the exhaustive search of every possible combination
of two columns in the dataset can be time-consuming, which can
be mitigated by further considering user intent to narrow down the
search space of pairwise column combination in the visualization
recommendation process. In addition, some terminologies used in
the natural language explanations by AdaVis may not be easily
understood by all users. For instance, technical terms like “a linear
regression model” are obvious for machine learning practitioners
but can be perplexing for laypersons. It will be helpful to further
incorporate more straightforward explanations into AdaVis, making
it more accessible to a broader range of audiences.

Training Time. The training time of AdaVis is prolonged
due to a large number of extracted features and corpus. AdaVis
extracts many features from a dataset. These features enable
AdaVis to comprehensively model the dataset characteristics and
further increase the generability of AdaVis, which can recommend

4. https://observablehq.com/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 13

appropriate visualization types for diverse datasets. However, the
large number of features also increases model complexity and thus
enlarges the model size. In addition, to better learn the complex
mapping from datasets to visualization types, AdaVis is trained on
a large corpus. Feature importance analysis can be used to identify
unimportant features and reduce the feature number in the model.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose AdaVis, an adaptive and explainable ap-
proach for visualization recommendation. Given a dataset, AdaVis
can adaptively recommend multiple appropriate visualization
choices and provide detailed explanations for the recommendation
result. Our approach consists of four modules: feature extraction,
knowledge graph construction, model training, and inference. It first
extracts the individual column’s features and the interrelationship
among data features, data columns and visualization choices.
With these features and interrelationships, a knowledge graph
is constructed to model them. The box embeddings of entities
and relations in the knowledge graph can also be learned. With
these learned box embeddings, an inference module can adaptively
recommend multiple visualizations for an unseen dataset and
provide natural language explanations for the recommendations.
Quantitative and qualitative evaluations are conducted to evaluate
the effectiveness and adaptability of AdaVis.

In future work, we will collect more diverse dataset-
visualization pairs and extend AdaVis to recommend more different
types of data visualizations in an adaptive and explainable manner.
Also, it is interesting to investigate how user intent can be integrated
into AdaVis to further improve its efficiency and effectiveness in
adaptive and explainable visualization recommendations.

ACKNOWLEDGMENTS

This project is supported by the Ministry of Education, Singa-
pore, under its Academic Research Fund Tier 2 (Proposal ID:
T2EP20222-0049) and HK RGC GRF grant 16210722. Any
opinions, findings and conclusions, or recommendations expressed
in this material are those of the author(s) and do not reflect the
views of the Ministry of Education, Singapore. We are grateful
to Xiaolin Wen for his help in figure editing, to the experts in
participating our interviews, and to anonymous reviewers for their
constructive feedback.

REFERENCES

[1] M. Zhou, Q. Li, Y. Li, S. Han, and D. Zhang, “Table2charts: Learning
shared representations for recommending charts on multi-dimensional
data,” pp. 2389–2399, 2020.

[2] M. O. Ward, G. Grinstein, and D. Keim, Interactive data visualization:
foundations, techniques, and applications. CRC Press, 2010.

[3] Y. Lin, H. Li, A. Wu, Y. Wang, and H. Qu, “Dminer: Dashboard design
mining and recommendation,” IEEE Transactions on Visualization and
Computer Graphics, 2022.

[4] H. Wickham, “A layered grammar of graphics,” Journal of Computational
and Graphical Statistics, vol. 19, no. 1, pp. 3–28, 2010.

[5] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer, “Reactive vega: A
streaming dataflow architecture for declarative interactive visualization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 22,
no. 1, pp. 659–668, 2015.

[6] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2301–2309, 2011.

[7] J. Heer, S. K. Card, and J. A. Landay, “Prefuse: a toolkit for interactive
information visualization,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2005, pp. 421–430.

[8] V. Dibia and Ç. Demiralp, “Data2vis: Automatic generation of data
visualizations using sequence-to-sequence recurrent neural networks,”
IEEE Computer Graphics and Applications, vol. 39, no. 5, pp. 33–46,
2019.

[9] Y. Wang, Z. Jin, Q. Wang, W. Cui, T. Ma, and H. Qu, “Deepdrawing:
A deep learning approach to graph drawing,” IEEE Transactions on
Visualization and Computer Graphics, vol. 26, no. 1, pp. 676–686, 2019.

[10] K. Hu, M. A. Bakker, S. Li, T. Kraska, and C. Hidalgo, “Vizml: A machine
learning approach to visualization recommendation,” in Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, 2019,
pp. 1–12.

[11] Y. Li, Y. Qi, Y. Shi, Q. Chen, N. Cao, and S. Chen, “Diverse interaction
recommendation for public users exploring multi-view visualization
using deep learning,” IEEE Transactions on Visualization and Computer
Graphics, vol. 29, no. 1, pp. 95–105, 2022.

[12] Z. Zeng, P. Moh, F. Du, J. Hoffswell, T. Y. Lee, S. Malik, E. Koh,
and L. Battle, “An evaluation-focused framework for visualization
recommendation algorithms,” IEEE Transactions on Visualization and
Computer Graphics, vol. PP, pp. 1–1, 2021.

[13] J. D. Mackinlay, “Automating the design of graphical presentations of
relational information,” ACM Transactions on Graphics, vol. 5, no. 2, pp.
110–141, 1986.

[14] J. Mackinlay, P. Hanrahan, and C. Stolte, “Show me: Automatic pre-
sentation for visual analysis,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1137–1144, 2007.

[15] M. Vartak, A. Parameswaran, N. Polyzotis, and S. R. Madden, “Seedb:
automatically generating query visualizations,” 2014.

[16] S. Zhu, G. Sun, Q. Jiang, M. Zha, and R. Liang, “A survey on automatic
infographics and visualization recommendations,” Visual Informatics,
vol. 4, no. 3, pp. 24–40, 2020.

[17] Q. Wang, Z. Chen, Y. Wang, and H. Qu, “A survey on ml4vis: Applying
machinelearning advances to data visualization,” IEEE Transactions on
Visualization and Computer Graphics, 2021.

[18] A. Wu, Y. Wang, X. Shu, D. Moritz, W. Cui, H. Zhang, D. Zhang,
and H. Qu, “Ai4vis: Survey on artificial intelligence approaches for
data visualization,” IEEE Transactions on Visualization and Computer
Graphics, 2021.

[19] Z. Chen, Y. Wang, Q. Wang, Y. Wang, and H. Qu, “Towards automated
infographic design: Deep learning-based auto-extraction of extensible
timeline,” IEEE Transactions on Visualization and Computer Graphics,
vol. 26, no. 1, pp. 917–926, 2019.

[20] H. Li, Y. Wang, S. Zhang, Y. Song, and H. Qu, “Kg4vis: A knowl-
edge graph-based approach for visualization recommendation,” IEEE
Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp.
195–205, 2021.

[21] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu,
“Definitions, methods, and applications in interpretable machine learning,”
Proceedings of the National Academy of Sciences, vol. 116, no. 44, pp.
22 071–22 080, 2019.

[22] A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in
Proceedings of the 27th Annual Conference on Neural Information
Processing Systems 2013, 2013, pp. 2787–2795.

[23] H. Ren, W. Hu, and J. Leskovec, “Query2box: Reasoning over knowl-
edge graphs in vector space using box embeddings,” arXiv preprint
arXiv:2002.05969, 2020.

[24] W. Chen and K. Shi, “Multi-scale attention convolutional neural network
for time series classification,” Neural Networks, vol. 136, pp. 126–140,
2021.

[25] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A
survey of approaches and applications,” IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.

[26] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” Advances in
Neural Information Processing Systems, vol. 26, 2013.

[27] Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao, and S. Liu, “Modeling relation
paths for representation learning of knowledge bases,” arXiv preprint
arXiv:1506.00379, 2015.

[28] L. Vilnis, X. Li, S. Murty, and A. McCallum, “Probabilistic embed-
ding of knowledge graphs with box lattice measures,” arXiv preprint
arXiv:1805.06627, 2018.

[29] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer, “Voyager: Exploratory analysis via faceted browsing of
visualization recommendations,” IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 1, pp. 649–658, 2015.

[30] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer, “Voyager 2: Augmenting visual

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 14

analysis with partial view specifications,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, 2017, pp.
2648–2659.

[31] Ç. Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati, “Foresight:
Recommending visual insights,” arXiv preprint arXiv:1707.03877, 2017.

[32] A. Key, B. Howe, D. Perry, and C. Aragon, “Vizdeck: self-organizing
dashboards for visual analytics,” in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, 2012, pp.
681–684.

[33] Y. Luo, X. Qin, N. Tang, and G. Li, “Deepeye: Towards automatic
data visualization,” in Proceedings of 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE, 2018, pp. 101–112.

[34] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender, “Learning to rank using gradient descent,” in Proceedings
of the 22nd International Conference on Machine Learning, 2005, pp.
89–96.

[35] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer, “Formalizing visualization design knowledge as constraints:
Actionable and extensible models in draco,” IEEE Transactions on
Visualization and Computer Graphics, vol. 25, no. 1, pp. 438–448, 2018.

[36] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on
knowledge graphs: Representation, acquisition, and applications,” IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[37] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model
for collective learning on multi-relational data,” in International
Conference on Machine Learning, 2011. [Online]. Available:
https://api.semanticscholar.org/CorpusID:1157792

[38] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and
relations for learning and inference in knowledge bases,” arXiv preprint
arXiv:1412.6575, 2014.

[39] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 28, no. 1, 2014.

[40] Z. Chen, Y. Wang, B. Zhao, J. Cheng, X. Zhao, and Z. Duan, “Knowledge
graph completion: A review,” IEEE Access, vol. 8, pp. 192 435–192 456,
2020.

[41] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding via
dynamic mapping matrix,” in Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics, 2015, pp. 687–696.

[42] X.-H. Li, C. C. Cao, Y. Shi, W. Bai, H. Gao, L. Qiu, C. Wang, Y. Gao,
S. Zhang, X. Xue et al., “A survey of data-driven and knowledge-aware
explainable ai,” IEEE Transactions on Knowledge and Data Engineering,
vol. 34, no. 1, pp. 29–49, 2020.

[43] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T.-S. Chua, “Explainable
reasoning over knowledge graphs for recommendation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 5329–5336.

[44] W. Ma, M. Zhang, Y. Cao, W. Jin, C. Wang, Y. Liu, S. Ma, and X. Ren,
“Jointly learning explainable rules for recommendation with knowledge
graph,” in The World Wide Web Conference, 2019, pp. 1210–1221.

[45] O. Seneviratne, A. K. Das, S. Chari, N. N. Agu, S. M. Rashid, C.-H.
Chen, J. P. McCusker, J. A. Hendler, and D. L. McGuinness, “Enabling
trust in clinical decision support recommendations through semantics.” in
SeWeBMeDa@ ISWC, 2019, pp. 55–67.

[46] M. K. Sarker, N. Xie, D. Doran, M. Raymer, and P. Hitzler, “Explaining
trained neural networks with semantic web technologies: First steps,”
arXiv preprint arXiv:1710.04324, 2017.

[47] W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec, “Em-
bedding logical queries on knowledge graphs,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[48] R. Ding, S. Han, Y. Xu, H. Zhang, and D. Zhang, “Quickinsights: Quick
and automatic discovery of insights from multi-dimensional data,” in
Proceedings of the 2019 International Conference on Management of
Data, 2019, pp. 317–332.

[49] C. Harris, R. A. Rossi, S. Malik, J. Hoffswell, F. Du, T. Y. Lee, E. Koh, and
H. Zhao, “Insight-centric visualization recommendation,” arXiv preprint
arXiv:2103.11297, 2021.

[50] Z. Cui, S. K. Badam, M. A. Yalçin, and N. Elmqvist, “Datasite:
Proactive visual data exploration with computation of insight-based
recommendations,” Information Visualization, vol. 18, no. 2, pp. 251–
267, 2019.

[51] L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stone-
braker, “Beagle: Automated extraction and interpretation of visualizations
from the web,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, 2018, pp. 1–8.

[52] H. Liu, F. Hussain, C. L. Tan, and M. Dash, “Discretization: An enabling
technique,” Data Mining and Knowledge Discovery, vol. 6, no. 4, pp.
393–423, 2002.

[53] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[54] J. Yuan, J. Vig, and N. Rajani, “isea: An interactive pipeline for semantic
error analysis of nlp models,” in 27th International Conference on
Intelligent User Interfaces, 2022, pp. 878–888.

[55] H. Ren and J. Leskovec, “Beta embeddings for multi-hop logical reasoning
in knowledge graphs,” Advances in Neural Information Processing
Systems, vol. 33, pp. 19 716–19 726, 2020.

[56] Z. Zhang, J. Wang, J. Chen, S. Ji, and F. Wu, “Cone: Cone embeddings
for multi-hop reasoning over knowledge graphs,” Advances in Neural
Information Processing Systems, vol. 34, pp. 19 172–19 183, 2021.

[57] Z. Hu, V. Gutiérrez-Basulto, Z. Xiang, X. Li, R. Li, and J. Z. Pan, “Type-
aware embeddings for multi-hop reasoning over knowledge graphs,” arXiv
preprint arXiv:2205.00782, 2022.

[58] S. Raschka, “An overview of general performance metrics of binary
classifier systems,” arXiv preprint arXiv:1410.5330, 2014.

[59] G. Wills and L. Wilkinson, “Autovis: automatic visualization,”
Information Visualization, vol. 9, no. 1, pp. 47–69, 2010.

[60] J. Seo and B. Shneiderman, “A rank-by-feature framework for interactive
exploration of multidimensional data,” Information visualization, vol. 4,
no. 2, pp. 96–113, 2005.

[61] T. Munzner, Visualization Analysis and Design. CRC press, 2014.
[62] B. Saket, A. Endert, and Ç. Demiralp, “Task-based effectiveness of

basic visualizations,” IEEE Transactions on Visualization and Computer
Graphics, vol. 25, no. 7, pp. 2505–2512, 2018.

[63] G. Guest, K. M. MacQueen, and E. E. Namey, Applied thematic analysis.
sage publications, 2011.

https://api.semanticscholar.org/CorpusID:1157792

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 15

APPENDIX

This section introduces the detailed features used in AdaVis. We extract 120 features from the dataset, where 80 are single-column
features, and 40 are cross-columns features. Table A1 displays all single-column features and corresponding meanings, and Table A2
shows cross-column features and their meanings.

Table A1: The table shows single-column features and their explanations.

Feature Name Explanation
num unique elements The number of unique values in a data column.
sortedness The quality of being sorted of values in a data column.
unique percent The percentage of unique value in a data column.
percent outliers 15iqr
percent outliers 3iqr
percent outliers 3std
percent outliers 1 99

They measure the proportion of outliers according to 1.5IQR/3IQR/3Std/(1%, 99%).

entropy
gini A data column’s disorderliness.

skewness
kurtosis
moment 5
moment 6
moment 7
moment 8
moment 9
moment 10

Distribution characteristics of values for a data column.

lin space seq coef
log space seq coef The degree of a data column values in the linear/ logarithmic range.

quant coeff disp
med abs dev
avg abs dev
coeff var
std
var

Variation characteristics of values for a data column.

normality p
normality statistic The degree of a data column values is in the normal distribution.

normalized range
range The range of a data column values.

q25
q75
normalized median
normalized mean
min
max
mean
median
length

A description of a data column’s statistical characteristics.

percent of mode The percente of mode values in a data column.
num none
percentage none Numer/ percentage of missing values in a data column.

mean value length
median value length
min length of value
std length of value
max length of value

length of mean/ median/ minimum/ standard deviation/ maximum values in a data column.

has none The data column has missing values.
is monotonic
is sorted
is unique

Data column values are montonic/sorted/unique.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 16

is lin space
is log space Data column values in linear/ logarithmic range.

has outliers 15iqr
has outliers 3iqr
had outliers 3td
has outlisers 1 99

Outliers exists according to 1.5IQR/ 3IQR/ 3Std/ (1%,99%) rule.

is normal 1
is normal 5 The data column values are significantly in the normal distribution with p < 0.01/ p < 0.05.

number of words in name
number of uppercase char The number of words/ upper case characters in a data column name.

name length The length of a data column name.
field name length The number of characters in a data column name.
data type is string
data type is integer
data type is decimal
data type is datetime

The data column value type is string/ integer/ decimal/ datatime.

general type is t
general type is q
general type is c

The general type of a data column values is temporal/ quantitative/ categorical.

first char upper name The data column name starts with an upper case character.
x in name
y in name
id in name
time in name
digit in name
space in name
dollar in name
pounds in name
euro in name
yen in name

There exist special characters: “x”, “y”, “id”, time, digit, whitespace, ‘$”, “£”, “C”, and “¥” in a
column name.

Table A2: The table shows cross-column features and their explanations.

Feature Name Explanation
percent shared elements
percent shared unique elements The percentage of values/ unique values shared by pairwise columns.

num shared element
snum shared unique elements The number of values/ unique values shared by pairwise columns.

num shared words The number of words that are shared by two column names.
percent shared words The percentage of words that are shared by two column names.
percent range overlap The percentage of the overlapping value range in two data columns.
has range overlap Two columns have overlapping value ranges.
has shared elements
has shared unique elements There exist some values/ unique values in two data columns.

has shared words There exist some words in two data column names.
identical
identical unique Two data column values/ unique values are identical.

linregress err The standard error of the calculated linear regression for two data columns.
linregress p The probability that there exists a linear regression.
kmeans 3 avg err
kmeans 5 avg err
kemans 6 avg err

The average distance between the data of two columns and calculated 3/ 5/ 6 centroids.

correlation value The value of the correlation coefficient between two columns of data.
correlation p The probability that there exists a correlation between two columns.
ks p
chi2 p
one way anova p

The probability that these two columns fit common statistical hypotheses.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 17

ks statistics
chi2 statistic
one way anova statistic

The calculated value between two data columns with common statistical testing approaches.

edit distance The dissimilarity between two data column names.
normalized edit distance The normalized dissimilarity between two data column names.
nestedness The degree of two data column values are nested.
chi2 significant 005
correlation significant 005
ks significant 005
linregress significant 005
one way anova significant 005

Two data columns fit common statistical hypotheses with a p-value = 0.05.

categorical categorical
category numerical
numerical numerical
time categorical
time numerical
time time

The relationship between data types of two columns.

	Introduction
	Background: Box Embedding in Knowledge Graphs
	Related Work
	Visualization Recommendation
	Knowledge Graph Embedding
	Knowledge Graph Based Explainable Recommendation

	Our Method
	Overview
	Feature Extraction
	Knowledge Graph Construction
	Box Embedding Learning
	Model Inference
	Explanation Generation

	Evaluation
	Experiment Setup
	Quantitative Evaluation
	Single-class Visualization Recommendation
	Multiple-Class Visualization Recommendation
	Ablation Study about Cross-column Features

	Qualitative Evaluation
	Adaptability and Explanation
	Cross-column Features
	User Interview and Feedback

	Discussion
	Lessons
	Limitations

	Conclusion and Future Work
	References
	Appendix

