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Cryptocurrency has been subject to illicit activities probably more often than traditional financial assets due to
the pseudo-anonymous nature of its transacting entities. An ideal detection model is expected to achieve all
three critical properties of (I) early detection, (II) good interpretability, and (III) versatility for various illicit
activities. However, existing solutions cannot meet all these requirements, as most of them heavily rely on deep
learning without interpretability and are only available for retrospective analysis of a specific illicit type. To
tackle all these challenges, we propose Intention-Monitor for early malice detection in Bitcoin (BTC), where
the on-chain record data for a certain address are much scarcer than other cryptocurrency platforms.

We first define asset transfer paths with the Decision-Tree based feature Selection and Complement (DT-SC)
to build different feature sets for different malice types. Then, the Status/Action Proposal Module (S/A-PM) and
the Intention-VAE module generate the status, action, intent-snippet, and hidden intent-snippet embedding. With
all these modules, our model is highly interpretable and can detect various illegal activities. Moreover, well-
designed loss functions further enhance the prediction speed and model’s interpretability. Extensive experiments
on three real-world datasets demonstrate that our proposed algorithm outperforms the state-of-the-art methods.
Furthermore, additional case studies justify our model can not only explain existing illicit patterns but can also
find new suspicious characters.
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1 INTRODUCTION
Cryptocurrency has emerged as a new financial asset class with ever-increasing market capital and
importance. Together with the growing popularity comes a wide range of cybercrimes [8, 18, 38]
including hacking, extortion [2, 15] and money laundering [7, 16, 37, 42]. Customary in this domain,
these criminal behaviors are referred to as malicious behaviors, and the addresses committing these
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Fig. 1. An overview of our Intention Monitor. After extracting address and path features, the model will
select and complement the most significant features. Then, a dynamical segmentation module splits
the observation period into several coherent segments and maps the segments and their differentiation
to a set of global statuses and actions through clustering. Finally, the Intention VAE module weights
the contribution of status/action and then fine-tunes the weighted summation of two XGB models’
predictions.

behaviors as malicious addresses since each transacting entity in cryptocurrencies is represented
as an anonymous address instead of an account bound with a verified identity. The detection and
diagnosis of malicious addresses in cryptocurrency transactions present greater challenges than fraud
detection in the traditional financial world for the following three distinguishing characteristics of
cryptocurrency.

• Early detection is all that matters. Unlike all other traditional financial assets, cryptocurren-
cies are traded at a 24/7, never-sleeping pace. Most malicious behaviors last for a short duration,
measured only by hours, and will have already inflicted the damage before the associated
malicious addresses are forever abandoned if they are not detected in the early stage. Moreover,
due to the decentralized nature of cryptocurrency’s peer-to-peer transactions, retrospective
analysis and identification provide little value as financial losses are almost impossible to
be held back and recover once the perpetration is complete. This challenges most existing
graph-based methods as transaction graphs [10, 19, 28] needed by these methods must be
sufficiently large to provide useful structural information [1]. In most cases, the time it takes to
form such a transaction graph is much too long to respond effectively to malicious behaviors
in action. Besides, these methods are usually computationally expensive and time-consuming
for early-stage detection.
• Type-specific features are not versatile enough for malicious behavior detection. The types

of malicious behaviors in cryptocurrencies are increasingly diverse, complex, and constantly
evolving, ranging from bitcoin-based scams to darknet markets and modus operandi hacking
attacks [14]. The characteristics of malicious behaviors also vary a lot across different types.
Manually-engineered features from specific malicious behaviors cannot be generalized to other
types and unknown ones, let alone apply to other cryptocurrencies with a complex heteroge-
neous relationship in general [23, 48]. Although some studies [39] can detect categories of
malicious activities, they are still only available for post-hoc analysis and invariably require a
full-history feature observation, which is consequentially scarce at the early stage of these fraud
activities. Thus, they cannot be directly deployed to detect illicit activities at the early stage.
A more general class of features that capture more fundamental characteristics of malicious
behaviors across different types is required to achieve the desired versatility.
• Interpretability is essential. Many malicious behaviors among the cryptocurrency platforms

are packaged as commercial projects to lure victims into investing. Investors must be able to
investigate and tell real creditable projects from fraudulent ones. However, most detection
methods nowadays hardly offer insights into the model’s predictions [24]. In particular, most
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models tend to improve recall for better safety and work appropriately for the surveillance
department. However, it may increase the risk of missing investment opportunities for common
investors. From the perspectives of regulators and investors, model interpretability that offers
a deeper understanding of the underlying intention behind malicious behaviors is crucial for
correctly assessing and identifying malicious behaviors.

Moreover, among all cryptocurrency platforms, Bitcoin (BTC) has the largest volume, while the
on-chain record data for a certain address are much scarcer than other popular platforms (e.g., ETH,
EOS with smart contracts). Thus, methods proposed on BTC are compatible with those on other
cryptocurrency platforms. To address the above-mentioned challenges in cryptocurrency platforms,
we propose Intention Monitor on BTC, an early malice detection system based on the notion of asset
transition paths. The essential idea is based on the fact that, no matter which malicious behavior,
the ultimate motivation and damage are reflected in the significant asset transition between innocent
addresses and malicious ones. Patterns extracted from significant asset transition would therefore
reveal the intention of malicious behavior across different types. Due to the generality of our asset
transition paths, our Intention Monitor is potentially applicable and compatible with domain-specific
techniques in other cryptocurrencies. On a high level, our solution progresses in the following four
stages:
(I) Feature formation. As shown in Fig.1, firstly, long-term (LT) and short-term (ST) transition
paths, the features of the greatest descriptive power and versatility for early-stage malice, would be
generated to capture the transaction patterns for both LT and ST transition structures.
(II) Feature selection and complement. Secondly, a Decision-Tree based Feature Selection and
Complement (DT-SC) module would identify features of the best discriminative power for different
malicious behavior types.
(III) Temporal assembly and semantic mapping. Status/Action Proposal Module (S/A-PM) dy-
namically assembles the observation period into several temporally coherent segments. It then maps
all temporally coherent feature segments to a global status set through clustering. Also, the differ-
entiations between consecutive segments are mapped to global action clusters. These statuses and
actions constitute the semantic units, and a status-action tuple (status, action) is used to denote the
corresponding intent-snippet at the same time step.
(IV) Model training with intention motif as prediction witness. Status-based and action-based
XGB models are trained to give backbone predictions. The hidden intent-snippet embedding will be
proposed by the Intention-VAE module to weight the contribution of the two backbone predictions.
Furthermore, these hidden snippet embeddings are used to fine-tune the predictions with a survival
module and sequence into intention motifs which serve as a witness to the prediction result.

To summarize, the key contributions of this paper are as follows:

• We propose a novel definition of asset transfer path, which is effective in capturing BTC trans-
action patterns for early malice detection and applicable to other cryptocurrencies potentially,
making the versatility of the model across different malicious behavior types possible.
• We provide good interpretability for our malice detection result with intention motif as pre-

diction witness, which is unachievable by those entire deep-learning models. This is achieved
by a combination of (I) our DT-SC module to select features and S/A-PM to assemble the
observation period and propose statuses, actions, and intent-snippets. (II) an Intention-VAE
module which encodes intent-snippet into hidden embeddings to weight the contribution of
different information dynamically, and (III) the survival module of Intention-VAE to fine-tune
the backbone predictions and group intent-snippets into the sequence of intention motif.
• We conduct extensive evaluation and perform substantially better on three malicious data sets

than the state-of-the-art. Furthermore, we present a deep-dive case study on the 2017 Binance
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hack incident to illustrate the corroborating transaction patterns and unexpected hidden insights
for early-sate malice detection that are otherwise unattainable.

2 RELATED WORK
There are many crimes involving many addresses on cryptocurrency trading platforms. Therefore,
detecting the identity information of the address is of great significance to the event’s post-analysis
and early prediction. Based on the types of features, we divide the existing malicious address
detection methods into three categories: (1) case-related features; (2) general address features; (3)
network-based features.

2.1 Case-Related features
Case-related features model the addresses and activities in a specific event. These detailed analyses
are based on the IP addresses of object nodes, public data from exchanges, and labels from related
forums. Concretely, some victims provided the criminals’ addresses and the detail of the criminal
cases they experienced. Except for those detailed data, the time difference between illegal transactions
and the sub-structure in criminal cases is also helpful in malice-case analysis. Reid and Harrigan [44]
combined these topological structures with external IP address information to investigate an alleged
theft of BTC. To extract information from social media, a transaction-graph-annotation system [17]
is presented. It matched users with transactions in darknet organizations’ activities. Similarly, by
exploiting public social media profile information, in [3], they linked 125 unique users to 20 hidden
services, including Pirate Bay and Silk Road. Marie and Tyler [50] presented an empirical analysis
of BTC-based scams. By amalgamating reports in online forums, they identified 192 scams and
categorized them. Instead of direct numerical analysis, other prior studies [34, 35] detected three
anomalous “worm” structures associated with spam transactions by visualizing the transaction data.
The case-related features are often helpful in specific case studies. However, most insights are only
available in particular cases and can not be generalized to other issues. Thus, we put forward the
asset transition paths, which are general in all event analyses.

2.2 General address features
The case-dependent criminal knowledge should be generalized to criminal patterns for a more general
detection system. Many works resort to machine learning for malicious activities and illegal address
detection. The first step for a machine learning model is a feature proposal module [36]. Since
the transaction is the only possible action for a BTC address, commonly used address features
majorly describe related transactions, revealing behavior preferences for the given address. Elli
et al. [4] proved transaction patterns such as transaction time, the index of senders and receivers,
and the amount value of transactions can help reveal addresses’ identity. Francesco et al. [58]
proposed a method for entity classification in BTC. By performing a temporal dissection on BTC,
they investigated whether some patterns are repeating in different batches of BTC transaction data.
On ETH, Chen et al. [11, 12] extracted features from user accounts and operation codes of the
smart contracts to detect latent Ponzi schemes implemented as smart contracts. Considering the
intrinsic characteristics of a Ponzi scheme, the extracted features mainly describe the transaction
amount, time, and count in a specific period. Yin et al. [55] applied supervised learning to classify
entities that might be involved in cybercriminal activities. Akcora et al. [2] applied the topological
data analysis (TDA) approach to generate the BTC address graph for ransomware payment address
detection. Shao et al. [45] embedded the transaction history into a lower-dimensional feature for
entity recognition. Nerurkar et al. [39] used 9 features to train the model for segregating 28 different
licit-illicit categories of users.
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The proposal of the address feature has significantly improved the model’s generality. However,
address features are challenging to characterize the behavioral characteristics of addresses imme-
diately. Some particular patterns of capital inflow and outflow are difficult to be reflected in these
characteristics (e.g., the pyramid structure in the Ponzi scheme and the peeling chain in money
laundering). Moreover, the discriminative features are various from type to type. The redundant
features are essential noise for detection. Therefore, based on the asset transition path, we propose
forward and backward concepts to describe the inflow and outflow of the asset. Furthermore, our
DT-SC can propose the best feature sets for different types of activities.

2.3 Network-based features
Cryptocurrency inherently provides a transaction network between addresses. Besides focusing on
address-level information, network-based features aim to characterize abnormal addresses from
network interaction behaviors. By building an address or transaction network, graph metrics are
proven powerful in detecting malicious activities. By taking advantage of the power degree laws and
local outlier factor methods on two BTC transaction graphs, Pham and Lee [41] detected the most
suspicious 30 users, including a justified theft. Ranshous et al. [43] analyzed the transaction patterns
centered around exchanges. Their study introduces various motifs in directed hypergraphs, especially
a 2-motif as a potential laundering pattern. Wu et al. [52] proposed two kinds of heterogeneous
temporal motifs in the BTC transaction network and applied them to detect mixing service addresses.
EdgeProp [49], a GCN-based model, was proposed to learn the representations of nodes and edges in
large-scale transaction networks. Lin et al. [29] analyzed two kinds of random walk-based embedding
methods that can encode some specific network features. Weber et al. [51] encodes address transaction
graph with GCN, Skip-GCN, and Evolve-GCN. Chen et al. [9] proposed E-GCN for phishing node
detection on the ETH platform. By changing the sampling strategy in Node2Vec, Wu et al. [53]
proposed the Trans2Vec model, which can consider the temporal information. Li et al. [25] used
TTAGN to model the temporal information of historical transactions for phishing detection.

Network-based methods perform well for retrospect analysis, as they encode the structural informa-
tion of transaction graphs. However, in the early stages, to hide their identities, malicious addresses
often transfer their asset with a chain-like structure. Moreover, the trading network is often too small
to form a discriminative topological structure. Also, these methods may lead to over-smoothing
issues and the dilution of the minority class [33] under the data-unbalanced setting.

3 PROBLEM FORMULATION
3.1 Problem Definition
In examining each BTC transaction, denoted as 𝑡𝑥 , we break down its input transaction set 𝐼=
{𝑖1, 𝑖2, . . . , 𝑖 |𝐼 | } and output transaction set 𝐽= { 𝑗1, 𝑗2, . . . , 𝑗 | 𝐽 | }. The transaction 𝑡𝑥 accounts for the
redistribution of tokens between sets 𝐼 and 𝐽 . To visualize it, think of incoming tokens pouring into a
reservoir before being allocated to the outgoing transactions based on predetermined ratios. As shown
in Fig. 2, there are five input transactions and two output transactions in this example1. However,
there is no explicit record of the number of tokens moving from an input 𝑖 to an output 𝑗 . This
necessitates the creation of a complete transaction bipartite graph for this 𝑡𝑥 , ultimately leading to the
generation of |𝐼 | × |𝐽 | transaction pairs. Put simply, a single transaction houses |𝐼 | × |𝐽 | transaction
pairs within it.

By the 𝑡𝑚-th time step, let 𝐷𝑡𝑚={𝑑𝑖𝑡𝑚 }
𝑁
𝑖=1={(𝑙𝑖 ,𝑇 𝑖𝑖𝑛,𝑡𝑚 ,𝑇

𝑖
𝑜𝑢𝑡,𝑡𝑚

)}𝑁𝑖=1, where 𝑙𝑖 ∈ {0, 1} is the label of
address 𝑖, 0 and 1 stand for regular and malicious addresses respectively.𝑇 𝑖𝑖𝑛,𝑡𝑚=[𝑡𝑥𝑖𝑖𝑛,1, 𝑡𝑥𝑖𝑖𝑛,2, . . . 𝑡𝑥𝑖𝑁𝑖𝑛,𝑡𝑚

]
are transactions where address 𝑖 acts as the input address, and 𝑇 𝑖𝑜𝑢𝑡,𝑡𝑚 is the transaction set where
1https://www.walletexplorer.com/txid/e56b528559b3ca7e14fcd15bb0185466b8ad3e831a2e4c009ebb7be6d5c902fa
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Fig. 2. A BTC transaction example. The strings on the red boxes stand for 5 input transactions and 2
output transactions.

address 𝑖 acts as the output address by the 𝑡𝑚-th time step. For ease of understanding, we denote
these two transaction sets as the 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 set and 𝑠𝑝𝑒𝑛𝑑 set, respectively.

Early Malicious Address Detection (EMAD). Given a set of addresses𝐴, and𝐷𝑡𝑚 at 𝑡𝑚-th time-step,
the problem is to find a binary classifier 𝐹 such that

𝐹 (𝑑𝑖𝑡𝑚 ) =
{
1 if address 𝑖 is illicit
0 Otherwise

. (1)

In the early detection task, we require the prediction to be consistent and predict the correct label
as early as possible. We denote the confident time as 𝑡𝑐 , where all classifier’s predictions 𝐹 after 𝑡𝑐
are consistent. The smallest 𝑡𝑐 is denoted as 𝑡𝑓 .𝑐 . We aim to train a classifier to predict the correct
address’s label with the smallest 𝑡𝑓 .𝑐 .

3.2 Solution Overview
Inspired by prior research on illegal activity intention encoding [31, 32], we develop a novel solution,
Intention Monitor, for the early detection of malicious addresses.

In particular, as shown in Fig. 3, we propose asset transfer paths to describe the transition patterns.
These asset transfer paths can essentially capture the transaction characteristics and address intentions
by tracing the source and destination of every related transaction.

Next, we put forward a Decision-Tree based Feature Selection and Complement model (DT-SC)
where a decision tree model is deployed to filter and complement the most significant features for
different types of malicious behaviors. Based on the features selected by DT-SC, the Status/Action
Proposal Module (S/A-PM) divides the observation period into several segments dynamically. Then,
S/A-PM clusters all the addresses’ segment representations and presents a set of global status
representations. The global action representations are proposed similarly based on the differentiation
between two consecutive segment representations. Each segment now has global status, action, and
the corresponding intent-snippet, which can explain the behavioral intention of a given address.
Based on the status and action vectors, the status and action XGB models are trained to predict
status-based and action-based predictions.

Finally, we build Intention-VAE, an efficient early malicious address detection framework. The
framework can (1) comprehensively encodes the relationship between status and action to generate
the hidden intent-snippet embedding, (2) dynamically weights the contribution between the status
and action XGB models, (3) fine-tune the weighted backbone predictions and group intent-snippets
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Fig. 3. (a) Address transaction flow and asset transfer paths. Numbers are the amount proportions to
the destination/source node. 𝐿𝑇 , 𝑆𝑇 , 𝐹𝑅, and 𝐵𝐾 are long-term, short-term forward, and backward,
respectively. (b) Evolution of asset transfer path. New asset transfer paths are generated if the address
participates in new transactions. Forward paths can be extended if the asset continues to flow in the
next period.

into the sequence of intention motifs. In the subsequent sections, we introduce asset transfer path,
DT-SC with S/A-PM, and Intention-VAE in Sections 4, 5, and 6, respectively.

4 ASSET TRANSFER PATH
At the early stage of malicious behaviors, the address-based network has not grown to the size for a
credible prediction. Instead, the transaction flow can provide critical information during this period.
We design asset transfer paths that consist of significant transactions for the EMAD task.

As mentioned in Sec. 3, there are |𝐼 | × |𝐽 | transaction pairs in one BTC transaction. However,
not all transaction pairs are helpful for malicious address detection. Those important transactions
typically constitute a significant portion of the entire transaction amount. We call such transactions
significant transactions. As illustrated in Fig. 3, each node represents a transaction. The nodes inside
the dashed gray box stand for transactions that the given address participates in. The left node is the
address’s receive transaction, where the address receives tokens from other transactions. In this single
transaction example, there are three inputs, contributing 5%, 70%, and 25% to the total transaction
amount. Similarly, the right node is the address’s spend transaction, where the address transfers its
tokens to the outputs. This transaction involves multiple outputs (with a distribution of 20%, 70%, and
10% as in this example). We then propose influence and trust transaction pairs.

4.1 Influence transaction pair
Given an input set 𝐼= {𝑖1, 𝑖2, . . . 𝑖 |𝐼 | } to an output 𝑗 and the transaction pair set is {𝐼 → 𝑗}, i.e.,
{𝐼 → 𝑗}={(𝑖1, 𝑗), (𝑖2, 𝑗), . . . , (𝑖 |𝐼 | , 𝑗)}, we define influence transaction pair as follows: Given an
influence activation threshold \ , (𝑖𝑘 , 𝑗) is called an influence transaction pair for transaction 𝑗 , if
there exists a 𝑘 (1 ≤ 𝑘 ≤ |𝐼 |) such that the amount of transaction pair (𝑖𝑘 , 𝑗) contributes to at least a
certain proportion of the input amount of transaction 𝑗 , i.e, 𝐴(𝑖𝑘 , 𝑗) ≥ \ ×𝐴({𝐼 → 𝑗}), where 𝐴(·)
denotes the amount of a transaction pair or the sum of all transaction pairs.
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Given an influence transaction pair (𝑖𝑘 , 𝑗), we can conclude that output 𝑗 obtains at least a
significant amount (based on the threshold) of the asset in this transaction from input 𝑖𝑘 . Accordingly,
given an receive transaction 𝑗 for the given address, to trace back to the source of the asset, we
proposed backward path based on influence transaction pair. Algo. 1 gives the detail to prepare
backward paths that reveal where 𝑗 obtains the asset.

4.2 Trust Transaction Pair
In addition to tracing back to the asset source, we also need to investigate where the asset flows to,
i.e., the destination of the asset transfer. To that end, we define trust transaction pair as follows:
Given a set of outputs 𝐽= { 𝑗1, 𝑗2, . . . 𝑗 | 𝐽 | }, an Input 𝑖, and the set of all transaction pairs {𝑖 → 𝐽 }, for
an output 𝑗𝑘 (1 ≤ 𝑘 ≤ |𝐽 |), if the input 𝑖 transfers at least a certain proportion of its output amount to
it, this transaction pair is called a trust transaction pair for Input 𝑖. It indicates a specific form of
trust from 𝑖 to 𝑗𝑘 in an asset transfer.

Given a trust transaction pair (𝑖, 𝑗𝑘 ), we can conclude that input 𝑖 sends a certain degree of the
asset to output 𝑗𝑘 . To trace the destinations of Input 𝑖, we also define forward paths based on trust
transaction pair. The pipeline to construct forward path is similar to backward path. The only
difference is the tracing direction.

Algorithm 1: Backward path preparation
input :Initial Output Tx 𝑗𝑜 , Threshold \ , Time Span 𝑇𝑆𝑝𝑎𝑛 .
output :Backward Path Set 𝑃 .

1 Initialize Backward Path Set: 𝑃 ← {[−, 1, 𝑗𝑜 ]};
2 Initialize Previous hop recorder: 𝑃𝑝𝑟𝑒 ← {[−, 1, 𝑗𝑜 ]};
3 Initialize Ending Flag: 𝐹𝑒𝑛𝑑 ← 𝐹𝑎𝑙𝑠𝑒;
4 𝑗𝑜 ’s Time: 𝑇𝑗𝑜 ← Time of 𝑗𝑜 ;
5 while 𝐹𝑒𝑛𝑑 ≠ 𝑇𝑟𝑢𝑒 do
6 Current hop recorder 𝑃𝑛𝑜𝑤 ← {};
7 𝐹𝑒𝑛𝑑 ← 𝑇𝑟𝑢𝑒;
8 for 𝑝 in 𝑃𝑝𝑟𝑒 do
9 𝑗 ← Output Tx 𝑝 [2];

10 𝐼 ← Input Tx Set of 𝑗 ;
11 for 𝑖 in 𝐼 do
12 𝑃𝑟𝑜𝑝𝑖 ← 𝐴𝑚𝑡𝑖/𝐴𝑚𝑡𝐼 ;
13 𝑆𝑐𝑜𝑟𝑒𝑖 ← 𝑃𝑟𝑜𝑝𝑖 ∗ 𝑝 [1];
14 𝑇𝑖 ← time of 𝑖;
15 if (𝑆𝑐𝑜𝑟𝑒𝑖 ≥ \ and 𝑇𝑗𝑜 −𝑇𝑖 ≤ 𝑇𝑆𝑝𝑎𝑛) then
16 Append [ 𝑗, 𝑆𝑐𝑜𝑟𝑒𝑖 , 𝑖] to 𝑃𝑛𝑜𝑤 ;
17 𝐹𝑒𝑛𝑑 ← 𝐹𝑒𝑛𝑑 && 𝐹𝑎𝑙𝑠𝑒;

18 𝑃𝑝𝑟𝑒 ← 𝑃𝑛𝑜𝑤 ;
19 𝑃 ← 𝑃 ∪ 𝑃𝑝𝑟𝑒 ;
20 return 𝑃
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4.3 Long-term and Short-term Path
For brevity, we would refer to both the backward path (BK) and forward path (FR) as asset
transfer paths and the activation threshold in both directions as activation threshold. To delineate
the transaction patterns of an address at both macro and micro levels for both backward path and
forward path, we define two kinds of time spans, i.e., long-term and short-term.

Long-term (LT) asset transfer paths have a larger maximum observation period and higher activa-
tion threshold, as they are designed to find the transaction’s major asset source. Short-term (ST) asset
transfer paths have a shorter observation period and lower activation threshold. They describe the
transition pattern and structure (e.g., pyramid-shaped, pulse-shaped, and spindle-shaped) within a
short period.

5 FEATURE SELECTION AND COMPLEMENT & STATUS PROPOSAL MODULE

Algorithm 2: DT-Based Feature Selection and Complement

input :Initial feature list 𝐹 𝑖 , Threshold \ .
output :Complement, Reserve, and Delete lists 𝐹𝐶 , 𝐹𝑅, 𝐹𝐷 .

1 Complement and Delete feature list: 𝐹𝐶 , 𝐹𝐷 ← {};
2 Reserve feature list: 𝐹𝑅 ← 𝐹 𝑖 ;
3 Average performance score: 𝑠𝐴𝑝 ← 0;
4 Best average performance score: 𝑠𝐵,𝐴𝑝 ← 0;
5 while 𝑠𝐴𝑝 ≥ 𝑠𝐵,𝐴𝑝 do
6 𝑠

𝐵,𝐴
𝑝 ← 𝑠𝐴𝑝 ;

7 𝐹
𝑡𝑚𝑝

𝐶
, 𝐹
𝑡𝑚𝑝

𝑅
, 𝐹
𝑡𝑚𝑝

𝐷
← 𝐹𝐶 , 𝐹𝑅, 𝐹𝐷 ;

8 Average performance score 𝑠𝐴𝑝 ← 0;
9 Best performance score 𝑠𝐵𝑝 ← 0;

10 for 𝑖𝑑𝑥 ← 1 to 10 do
11 𝐷𝑇𝑖𝑑𝑥 , 𝑠𝑝,𝑖𝑑𝑥 ← Train&Test DT(𝐹𝐶 , 𝐹𝑅, 𝐹𝐷 );
12 𝑠𝐴𝑝 += 𝑠𝑝,𝑖𝑑𝑥/10;
13 if 𝑠𝑝,𝑖𝑑𝑥 > 𝑆𝐵𝑝 then
14 Update(𝐹 𝑡𝑚𝑝

𝐶
, 𝐹
𝑡𝑚𝑝

𝑅
, 𝐹
𝑡𝑚𝑝

𝐷
);

15 if (𝑠𝐴𝑝 ≥ 𝑠𝐵,𝐴𝑝 ) then
16 𝐹𝐶 , 𝐹𝑅, 𝐹𝐷 ← 𝐹

𝑡𝑚𝑝

𝐶
, 𝐹
𝑡𝑚𝑝

𝑅
, 𝐹
𝑡𝑚𝑝

𝐷
;

17 return 𝐹𝐶 , 𝐹𝑅, 𝐹𝐷

In this section, we describe the process of Decision-Tree based Feature Selection and Complement
(DT-SC) and Status/Action Proposal Module (S/A-PM). We first introduce the address and asset
transfer path features. Then, we elaborate on DT-SC that filters, and complements the features
for different malicious activities. The status and action sequences are necessary to understand the
address’s intention. To fetch these sequences, we deploy S/A-PM to split the observation period
into segments and cluster them to generate global status and actions. The overview of DT-SC and
S/A-PM is shown in Fig. 4.
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Fig. 4. An overview of Decision-Tree based feature Selection and Complement (DT-SC) and Sta-
tus/Action Proposal Module (S/A-PM). After extracting address and path features, The DT-SC will filter
and complement the most significant features. Then, the S/A-PM splits the observation period into
several coherent segments and maps the segments and their differentiation to a set of global statuses
and actions through clustering.

Table 1. Feature counting and explanation.

Feature Type Aspect Feature Num. Complement

Address

Balance Balance 1 None

Tx Count Number of spend (receive) tx (by now/recent one hour) 4 None
Ratio of spend tx to recieve tx (by now/recent one hour) 2 None

Tx Frequency Max spend (receive) tx number per hour 2 None

Abnormal Tx Number of spend (receive) tx with 0 amount 2 None

Temporal Info Time of max hourly spend (receive) tx number 2 None
Time difference between max hourly spend and receive 1 None

Activity Active hour number and active rate 2 None

Path

Path-Count Path number 1 None

Path-Length Hop (height)-length 2 Min,Max,Std

(LT/ST)-(BK/FR) Tx Amount Max (min) input (output) amount 4 Min,Max,Std

Tx Structure Max (min) input (output) tx number 4 Min,Max,Std

Connectivity Path’s max (min) activation score 2 Min,Max,Std

5.1 Address & Transaction Features
Following [5, 6, 39], we also use the address features to characterize the address’s behaviors. As
shown in Table 1, we extracted 16 address features that characterize an address from six perspectives.
Moreover, the asset path can provide critical information. For a specific path set, we selected 13 path
features from five perspectives. Also, an address has four path sets (LT-BK, ST-BK, LT-FR, ST-FR),
a path set has multiple paths, and every path has these 13 path features. To characterize the overall
properties of each path set, we calculated the maximum (max), minimum (min), average (avg), and
standard deviation (std) values of every feature except the path number. Thus, there are 12*4+1=49
path features for a single path set. Since we have four path sets (LT-F, LT-B, ST-F, ST-B) (Fig. 3),
there are 49*4=196 path features in total. We can characterize the early behavior of different types of
addresses through these address and path features.

We believe that hundreds of extracted address and path features can summarize addresses’ early
behaviors from several perspectives. But for a specific type of activity, not all features are equally
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helpful, and the introduction of irrelevant features can affect the model’s performance (will be
justified in Section 7.3). Therefore, we need to select the most discriminative features from all these
features.

5.2 DT-based feature Selection and Complement
Decision trees can partition the data based on the features that best separate the classes or target
variables. During the tree-building process, features that are more informative or discriminatory tend
to be selected earlier as splitting criteria. This means that important features are prioritized in the
decision tree construction and thus have higher importance scores.

We develop a decision tree-based feature selection and complement module. In this module, we
have three sets: complement list, reserve list, and deletion list. This module complements features in
the complement list, retains features in the reserve list, and deletes features in the deletion list.

In the initial round, address features and all path features’ mean values are set as seed features. So
the seed feature number is 13*4+16=68. We feed these 68 features into the decision tree model and
select the best-performing (the performing score will be elaborated in Section 7.2) model from 10
independent training models. We sort the model’s feature importance scores and denote the maxi-
mum importance score as 𝑠𝑀𝑖𝑚𝑝 . Given a feature j with an importance score 𝑠𝑖𝑚𝑝,𝑗 , if 𝑠𝑖𝑚𝑝,𝑗≥\*𝑠𝑀𝑖𝑚𝑝 ,
we append it into the complement list and complement it in the next round of training. \ is the
complement threshold. If 0 < 𝑠𝑖𝑚𝑝,𝑗 < \*𝑠𝑀𝑖𝑚𝑝 , we append it into the reserve list, and we will retain it
without complement in the following round. If 𝑠𝑖𝑚𝑝,𝑗=0, we append it into the deletion list, and we
will delete this feature in the subsequent training process.

In the second round of training, we first complement the features in the complement list. Here,
by complement, we mean not only using the feature’s mean value but also including its maximum,
minimum, and standard deviation (only path features are available for complement). Through
complement, we provide the model with more details about the complement feature. Then, we
append reserve features to the input feature list without changing them. Finally, we delete features in
the delete list. Algo. 2 shows the details of DT-SC.

5.3 Status/Action Proposal Module
The status and action sequences can depict the intention of the given address [31], which is of
great importance to the model’s interpretability. However, if we analyze each address independently,
it is difficult for the model to obtain a generalizable intention module, the model’s ability and
interpretability will be reduced when predicting newly emerging malicious behaviors. To solve these
problems, we propose the Status/Action Proposal Module (S/A-PM).
Dynamical segmentation. By definition, status is to describe a certain stable state. To characterize
the statuses and their evolution, we need to split the entire observation time window into several
“state” segments dynamically. In every segment, we require all addresses’ features to be stable enough.
Therefore, at the 𝐽 -th time step, we first normalize all addresses’ feature sequences along the timeline.
Take address 𝑖 as example, the feature list is [𝑓1,𝑖 , ..., 𝑓𝑗,𝑖 , ...𝑓𝐽 ,𝑖 ] where 𝑓𝑗,𝑖 is the feature vector at 𝑗-th
time step of address 𝑖. And for each time step 𝑗 , we then calculate the change ratio 𝐶 𝑗 .

𝐶 𝑗 =

∑𝑁
𝑖=1

∑𝑀
𝑚=1 (𝑓𝑚𝑗,𝑖 − 𝑓𝑚𝑗−1,𝑖 )/(𝑓𝑚𝑗−1,𝑖 + 𝛿)

𝑀 ∗ 𝑁 , (2)

where 𝑁 is the data size, 𝑀 is the feature dimension, 𝑑𝑒𝑙𝑡𝑎 is a small number in case of the divisor
equals 0. By the 𝐽 -th time step, the highest and current change ratio is denoted as 𝐶𝐻 and 𝐶 𝐽 . If
𝐶 𝐽 > \ ∗𝐶𝐻 , we think the addresses’ statuses change and add 𝐽 to the segmentation point list. In
this manner, we can guarantee the stability of each segment. Notice that, to build a more general
segmentation strategy, the segmentation point list is shared by all addresses.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.



111:12 Cheng et al.

+ + +

+--

Status i

Action j

+
+

+

Encoder Decoder

+
+-

Sample

+ + -

…

…

…

…

Status Embedding

Action Embedding

Status XGB

Action XGB

Survival 
Analysis

Intention
Attention

+
+

+

Weighted
Summation

Σ

Status
Prediction

Intention
Prediction

Action
Prediction

Weight
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Segment Representation. Then, to build a generalizable intention module, we need to find and repre-
sent the common ground of these segments across all addresses. Therefore, for the 𝑗-th segment of ad-
dress 𝑖, we first define its segment representation. The segment’s beginning and end time points are de-
noted as 𝑏 𝑗 and 𝑒 𝑗 respectively, and the corresponding feature sequence is [𝑓𝑏 𝑗 ,𝑖 , 𝑓𝑏 𝑗+1,𝑖 , ..., 𝑓𝑒 𝑗−1,𝑖 , 𝑓𝑒 𝑗 ,𝑖 ].
Then the segment vector 𝑔 𝑗,𝑖 is calculated as the average of the feature sequence over the timeline.
Naturally, the change between 𝑔 𝑗−1,𝑖 and 𝑔 𝑗,𝑖 is redeemed as segment differentiation 𝑑 𝑗,𝑖 . Specially,
we define 𝑔0,𝑖 as a full-zero vector. Thus, for address 𝑖, we get a sequence of segment representations
[𝑔1,𝑖 , ..., 𝑔𝑘,𝑖 , ..., 𝑔𝐾,𝑖 ], and a sequence of differentiation representations [𝑑1,𝑖 , ..., 𝑑𝑘,𝑖 , ..., 𝑑𝐾,𝑖 ], where 𝐾
is the segmentation number.
Status and action clustering. Addresses with the same type may have similar purposes. For example,
after the Ransomware addresses are activated, most will wait for the victims to pay the ransom
in a segment and transfer out quickly in another segment. We can call these two segments the
“waiting segment” and “transfer segment” respectively. These semantic meanings are beneficial for
understanding and interpreting the address’s intention, and we will justify this in Section 7.6.

To obtain global semantic representations such as “waiting” or “transfer”, we cluster these 𝑁 ∗ 𝐾
addresses’ segment representations through the agglomerative clustering algorithm, a hierarchical
clustering method. The hierarchical structure provides better interpretability in further analysis.
Similarly, we cluster these 𝑁 ∗ 𝐾 addresses’ segment differentiations to describe the general actions
to obtain action clusters. We denote each status and action cluster’s centers as the status and action
vectors. Finally, for each address, we have five sequences: feature, status(vector and cluster index),
and action(vector and cluster index). Notice that the action is calculated from the current status and
previous status.

6 INTENTION VAE
As mentioned in Section 2, tree-based machine learning algorithms have been proven powerful in
related tasks about malice detection. However, they are difficult to utilize temporal patterns, which is
extremely useful for depicting the address’s intention, especially during the early stage with severe
data scarcity. Besides, as there is no early stopping mechanism in the decision tree group, subsequent
redundant noise will trigger the issue of inconsistent prediction. Thus, on top of tree-based algorithms
(XGB as the backbone), we introduce the Intention VAE module, which can encode such temporal
patterns and prevent noise with survival analysis.
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6.1 Intention Proposal
By understanding an address’s status and action, we can discern its intention. Furthermore, when an
address is under a certain status, and its intention is known, we can forecast its subsequent action.
Thus, to depict this relationship, we deploy a VAE module to generate the hidden intent-snippets
embeddings with the corresponding statuses and actions. As shown in Fig 5, for address 𝑖 at time
step 𝑗 , we have the corresponding status index 𝑆𝑖𝑑𝑥𝑖, 𝑗 and action index 𝐴𝑖𝑑𝑥𝑖,𝑗 . We transform them into
learnable embedding vectors as follows:

𝑆𝐸𝑖,𝑗 = Emb𝑆 (𝑆𝑖𝑑𝑥𝑖,𝑗 ),
𝐴𝐸𝑖,𝑗 = Emb𝐴 (𝐴𝑖𝑑𝑥𝑖, 𝑗 ).

(3)

After getting the embedding of status and action, the sampled bottleneck vector of our Intention-
VAE module is regarded as the hidden intent-snippet. Through Intention-VAE, we can preserve the
most critical information of status and action. Moreover, the non-linear transformation in the module
can generate a more expressive representation. Another crucial point is that Intention-VAE can
guarantee that the intention space has the properties of continuity and completeness [22]. Specifically,
continuity requires two close intention points in the latent space not to give two completely different
contents. As for completeness, it requires an intention point to give meaningful content once decoded.
The intention representation is calculated as follows:

𝑥𝑖, 𝑗 = VAE-Encoder( [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ]),
`𝑖, 𝑗 =𝑊𝑥`𝑥𝑖, 𝑗 + 𝑏`,
𝜎𝑖, 𝑗 =𝑊𝑥𝜎𝑥𝑖, 𝑗 + 𝑏𝜎 ,
𝑧𝑖, 𝑗 = `𝑖, 𝑗 + exp(𝜎𝑖, 𝑗 ) ⊙ 𝑒, 𝑒 ∼ N(0, 𝐼 ),
𝑥𝑖, 𝑗 = VAE-Decoder(𝑧𝑖, 𝑗 ),

(4)

where [.| |.] stands for concatenation, 𝑥𝑖, 𝑗 ∈ R𝑑𝑧 is the output of the VAE encoder, 𝑑𝑧 is the dimension
of the intent-snippet. 𝑧𝑖, 𝑗 is the bottleneck vector of our Intention-VAE, also denoted as the hidden
intent-snippet embedding. Instead of decoding the interval vector directly, VAE encodes inputs as
distributions. Thus, the model proposes the mean value `𝑖, 𝑗 and stand deviation 𝜎𝑖, 𝑗 . Our hidden
intent-snippet embedding is sampled from the distribution of N(`𝑖, 𝑗 , 𝜎𝑖, 𝑗 ). However, due to the
gradient descent issue of the sampling process, the module uses a reparameterization trick to sample
𝑒 form N(0,I) instead of sampling 𝑧 directly. 𝑥𝑖, 𝑗 is the reconstruction of input data.

6.2 Intention-Based Survival Analysis
To enable the model to encode temporal patterns, we introduced Intention-Based Survival Analysis
to Intention-VAE. This module can accelerate the prediction speed and improve the consistency of
the prediction by cutting off continuous noise.

The survival function 𝑆 ( 𝑗) represents the probability of an event that has not occurred time step
𝑗 , where an event here represents “the given address labeled as malicious”. Every time step, the
model should give lower 𝑆 ( 𝑗) to malicious addresses and higher 𝑆 ( 𝑗) to legal addresses. The hazard
function _ 𝑗 is the instantaneous event occurrence rate at time 𝑗 given that the event does not occur
before time 𝑗 . Note that the observation time is discrete in our case. We denote a discrete timestamp
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index as 𝑗 , the association between 𝑆 ( 𝑗), _ 𝑗 and probability density function 𝑓𝑗 can be described as:

𝑆 ( 𝑗) = 𝑃 (𝑇 ≥ 𝑗) =
∞∑︁
𝑘=𝑗

𝑓𝑘 ,

_ 𝑗 = 𝑃 (𝑇 = 𝑗 |𝑇 ≥ 𝑗) = 𝑓𝑗/𝑆 ( 𝑗),

𝑆 ( 𝑗) = 𝑒𝑥𝑝 (−
𝑗∑︁

𝑘=1
_𝑘 ).

(5)

To enable the model to encode temporal patterns, we first update each input with corresponding
LSTM modules as follows:

ℎ𝐹𝑖,𝑗 , 𝑐
𝐹
𝑖,𝑗 = LSTM𝐹 ( [𝑧𝑖, 𝑗 | |𝑓𝑖, 𝑗 ], ℎ𝐹𝑖,𝑗−1, 𝑐𝐹𝑖,𝑗−1),

ℎ𝑆𝑖,𝑗 , 𝑐
𝑆
𝑖,𝑗 = LSTM𝑆 ( [𝑧𝑖, 𝑗 | |𝑆𝑣𝑒𝑐𝑖, 𝑗 ], ℎ𝑆𝑖,𝑗−1, 𝑐𝑆𝑖,𝑗−1),

ℎ𝐴𝑖,𝑗 , 𝑐
𝑆
𝑖,𝑗 = LSTM𝐴 ( [𝑧𝑖, 𝑗 | |𝐴𝑣𝑒𝑐𝑖, 𝑗 ], ℎ𝐴𝑖,𝑗−1, 𝑐𝐴𝑖,𝑗−1).

(6)

Then, the hazard rate _ 𝑗 and intention-based prediction in our Intention-AVE are given as follows:

_ 𝑗 =
∑︁

𝑡 ∈{𝐹,𝑆,𝐴}
𝑙𝑛(1 + 𝑒𝑥𝑝 (𝑊𝑖ℎ

𝑡
𝑖, 𝑗 ))),

𝑃 𝐼𝑖, 𝑗 = [𝑒𝑥𝑝 (−
𝑗∑︁

𝑘=1
_𝑘 ), 1 − 𝑒𝑥𝑝 (−

𝑗∑︁
𝑘=1

_𝑘 )] .
(7)

6.3 Intention Augmented Prediction Fusion
Despite the difficulty in utilizing temporal patterns, tree-based models can provide better stability
under label unbalance settings. To incorporate these benefits, we build an Intention Augmented
module upon the tree-based models.

First, we train two XGB models with status and action representations, namely Status-XGB and
Action-XGB. For address 𝑖 at time step 𝑗 , based on the status vector 𝑆𝑣𝑒𝑐𝑖, 𝑗 and action vector 𝐴𝑣𝑒𝑐𝑖, 𝑗 ,
we first get predictions 𝑃𝑆𝑖,𝑗 , 𝑃

𝐴
𝑖,𝑗 ∈ R2 from these two models as the backbone predictions. Each

dimension represents the probability of the corresponding class (0-normal, 1-malicious).
Both status and action can provide critical information for prediction, but their contributions may

change dynamically. Therefore, the weights assigned in the two decision trees should also change
dynamically. To this end, we use the Intention-Attention module to assign the prediction weights of
the two decision trees.

𝑎𝑆𝑖,𝑗 =𝑊
𝑎tanh(𝑊 𝑓 ,𝑆 [𝑓𝑖, 𝑗 | |𝑆𝑣𝑒𝑐𝑖, 𝑗 ]),

𝑎𝐴𝑖,𝑗 =𝑊
𝑎tanh(𝑊 𝑓 ,𝐴 [𝑓𝑖, 𝑗 | |𝐴𝑣𝑒𝑐𝑖, 𝑗 ]),

𝑎𝐼𝑖, 𝑗 =𝑊
𝑎tanh(𝑊 𝑓 ,𝐼 [𝑓𝑖, 𝑗 | |𝑧𝑖, 𝑗 ]),

𝛼
(𝑆,𝐴,𝐼 )
𝑖, 𝑗

= exp(𝑎𝑡𝑖, 𝑗 )/
{𝑆,𝐴,𝐼 }∑︁
𝑡

exp(𝑎𝑡𝑖, 𝑗 ).

(8)
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With the acceleration of the Intention-Based Survival Analysis, the final prediction 𝑃𝑖, 𝑗 for address
𝑖 at time step 𝑗 is given by:

𝑃𝑖, 𝑗 =

{𝑆,𝐴,𝐼 }∑︁
𝑡

𝑃𝑡𝑖, 𝑗 ∗ 𝑎𝑡𝑖, 𝑗 ,

𝑃𝑖, 𝑗 = 𝑆 ( 𝑗) ∗ 𝑃𝑖, 𝑗 + (1 − 𝑆 ( 𝑗)) ∗ 𝑃𝑖, 𝑗−1.
(9)

The introduction of survival prediction analysis can correct the prediction errors caused by the lack
of temporal information and group statuses into an intention sequence. We denote the time step when
the survival probability equals 0 as 𝑡𝑑𝑖𝑒 , where the model has collected enough information to predict
the malicious address’s label. In other words, the model has figured out the address is malicious.
Since VAE makes the distribution of each 𝑧’s dimension close to N(0, 𝐼 ), and the intention latent
space is continuous and complete, we can binarize each dimension to index each address’s intent-
snippet as 𝐼 𝑖𝑑𝑥𝑖,𝑗 (e.g., As shown in Fig 5, 𝑧’s dimension 𝑑𝑧 is 3 , we can get 8 intention indices, i.e.,
1(+,+,+), 2(-,+,+), ..., 7(+,-,-), 8(-,-,-)). Thus, we call the intent-snippet index sequence {𝐼 𝑖𝑑𝑥𝑖,𝑗 }

𝑡𝑑𝑖𝑒
𝑗=1 as

the intention motif of address 𝑖. And this intent-snippet motif can be interpreted by the corresponding
status and action sequences.

6.4 Loss Function
Classification Loss. For address 𝑖 at 𝑗-th time step, the early detection likelihood that this address is
malicious and the negative logarithm prediction 𝑙𝑜𝑠𝑠𝑃 are defined below:

𝑦𝑖, 𝑗 = 𝑃𝑖, 𝑗 [1],
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = (1 − 𝑦𝑖, 𝑗 )𝑙𝑖 (𝑦𝑖, 𝑗 )1−𝑙𝑖 ,

𝑙𝑜𝑠𝑠𝑃𝑖,𝑗 = (𝑙𝑖 − 1) ∗ log(𝑦𝑖, 𝑗 ) − 𝑙𝑖 ∗ log(1 − 𝑦𝑖, 𝑗 ).
(10)

Intention-VAE Loss. VAE is trained by maximizing the log-likelihood as follows:

log𝑃 ( [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ]) =
∫
𝑧

(𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])log𝑃 ( [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ]))𝑑𝑧,

=

∫
𝑧

𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])log(
𝑃 (𝑧, [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])
𝑞(𝑧 | [𝑆𝐸

𝑖,𝑗
| |𝐴𝐸

𝑖,𝑗
])
)𝑑𝑧

+
∫
𝑧

𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])log(
𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])
𝑃 (𝑧 | [𝑆𝐸

𝑖,𝑗
| |𝐴𝐸

𝑖,𝑗
])
)𝑑𝑧,

≥
∫
𝑧

𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])log(
𝑃 ( [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ] |𝑧)𝑃 (𝑧)
𝑞(𝑧 | [𝑆𝐸

𝑖,𝑗
| |𝐴𝐸

𝑖,𝑗
])
)𝑑𝑧,

(11)

where 𝑧 ∼ N(0, 𝐼 ) is an intermediate random variable,
∫
𝑧
𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])log( 𝑞 (𝑧 | [𝑆

𝐸
𝑖,𝑗
| |𝐴𝐸

𝑖,𝑗
] )

𝑃 (𝑧 | [𝑆𝐸
𝑖,𝑗
| |𝐴𝐸

𝑖,𝑗
] ) )𝑑𝑧 equals

𝐾𝐿(𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ]) | |𝑃 (𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])) which is guarantee to be positive. Thus we only need to max-
imize the lower bound 𝑙𝑏𝑖, 𝑗 i.e., the last term in the above equation. 𝑙𝑏𝑖, 𝑗 can be reformalized as
follows:

𝑙𝑏𝑖, 𝑗 =

∫
𝑧

(𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])log( 𝑃 (𝑧)
𝑞(𝑧 | [𝑆𝐸

𝑖,𝑗
| |𝐴𝐸

𝑖,𝑗
])
)𝑑𝑧 +

∫
𝑧

(𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])log(𝑃 ( [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ] |𝑧))𝑑𝑧,

(12)
where the first term equals to −𝐾𝐿(𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ]) | |𝑃 (𝑧)). To minimize this KL divergence, we need
𝑞(𝑧 | [𝑆𝐸𝑖,𝑗 | |𝐴𝐸𝑖,𝑗 ])) close to N(0, 𝐼 ). The second term equals the negative reconstruction error in Auto
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Table 2. Dataset Statistics.

Type Positive Negative Posi./Nega. Ratio Segment

Hack 341 79,765 0.46% 10
Ransomware 1,903 50,617 3.76% 17

Darknet 7,696 89318 8.62% 18

Encoder. Finally, the VAE loss 𝑙𝑜𝑠𝑠𝑉
𝑖,𝑗

can be represented as
∑𝑑𝑧
𝑑=1 (𝑒𝑥𝑝 (𝜎

𝑑
𝑖,𝑗 ) − (1 + 𝜎𝑑𝑖,𝑗 ) + (`𝑑𝑖,𝑗 )2) as

indicated by [22].
Consistent and Early Boost Loss. An accurate and reliable model should provide a consistent
prediction. For an ideal model, the current prediction should be consistent with the previous prediction
every time step. Thus, we introduce the consistency loss 𝑙𝑜𝑠𝑠𝐶 to improve the predictions’ conformity:

𝑙𝑜𝑠𝑠𝐶𝑖,𝑗 =

{
0 𝑠𝑖𝑔𝑛((𝑦 𝑗

𝑖
− 0.5) ∗ (𝑦 𝑗−1

𝑖
− 0.5)) >= 0,

1 𝑒𝑙𝑠𝑒,
(13)

where 0.5 is the decision boundary of positive (malicious) and negative (regular).
To accelerate the prediction speed, we need to decrease the survival probability as soon as possible.

Thus, we introduced an earliness loss 𝑙𝑜𝑠𝑠𝐸 . Every time step, the survival probability for positive
samples should be as small as possible. The negative samples’ survival probabilities should be as
large as possible. For address 𝑖 at time split 𝑡 , 𝑙𝑜𝑠𝑠𝐸 is defined as:

𝑙𝑜𝑠𝑠𝐸𝑖,𝑡 =

{
𝑆𝑖 (𝑡) 𝑙𝑖 = 1,
−𝑆𝑖 (𝑡) 𝑙𝑖 = 0,

(14)

where 𝑙𝑖 is the label of address 𝑖.
However, the model is hard to predict the correct labels at the early stage due to data insufficiency.

The model can be perturbed by the wrong predictions in the early period. Thus, all the loss items are
weighted by

√
𝑡 . the overall loss function is defined as:

L =

𝑡𝑀∑︁
𝑡=1

𝑁∑︁
𝑖=1

√
𝑡 (𝑙𝑜𝑠𝑠𝑃𝑖,𝑡 + 𝛾1𝑙𝑜𝑠𝑠𝑉𝑖,𝑡 + 𝛾2𝑙𝑜𝑠𝑠𝐶𝑖,𝑡 + 𝛾3𝑙𝑜𝑠𝑠𝐸𝑖,𝑡 ), (15)

where 𝛾1 to 𝛾3 are coefficients to control the contribution between 𝑙𝑜𝑠𝑠𝑃 , 𝑙𝑏 , 𝑙𝑜𝑠𝑠𝐶 and 𝑙𝑜𝑠𝑠𝐸 . 𝑡𝑀 is the
time span of training data, 𝑁 is the training address number.

7 EXPERIMENT AND ANALYSIS
7.1 Data Preparation
Raw Data and Label Collection For higher high credibility, we only select data verified by many
participants. Thus, we obtained all the data from the 1-st block to the 610637-th block (the first
block of 2020). To get the labels for three different types of malicious addresses, namely, hack (hack
exchanges and steal tokens), ransomware (encrypt victims’ data and demand ransoms in BTC), and
darknet (commercial website’s address operates via darknets such as I2P). We performed a manual
search on public forums, datasets, and prior studies [40], [26], and [52]. For regular addresses, we
collected four types of addresses as “negative samples”, namely exchange, mining, merchant, and
gambling. The negative dataset is also augmented as prior studies [21, 30, 52, 54]. The numbers of
positive, negative, positive/negative ratios, and dynamic segmentation numbers (within one day) for
each malicious type are shown in Table. 2.
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7.2 Settings and Metrics
Generally, according to public reports, relevant agencies can detect most malicious behaviors within
a day, such as hacking or malicious attacks. Therefore, in our experiment, to train a model that gives
an early warning, we use address first 24 hours with a 1 hour interval as training data. The max
time spans for the long-term (LT) and short-term (ST) paths are one week and one day, respectively.
Notice that the real timespan for a forward path is the smaller one between observing timestep and
the pre-defined max timespan, as we can not foresee future data. We set 0.5 and 0.01 as the thresholds
for LT and ST paths, respectively, as LT paths aim to find the most critical transaction pairs, and ST
paths aim to encode more transaction structure information.

We average the metrics along the timeline to evaluate the performance. The selected metrics are
accuracy (Acc.), precision (Prec.), and recall (Rec.). Besides, the model should predict correct labels
fast to prevent economic loss earlier. Also, due to data insufficiency, the model may predict conflict
labels at different timesteps, thus confusing users. Thus we require the predictions to be consistent.
To evaluate the earliness and the consistency of the prediction, we introduce the early-weighted F1
score 𝐹1𝐸 and consistency-weighted score 𝐹1𝐶 as follows:

F1E =

∑𝑁
𝑖=1 𝐹1𝑖/

√
𝑖∑𝑁

𝑖=1 1/
√
𝑖
,

F1C =

∑𝑁−1
𝑖=1
√
𝑖 × 𝐹1𝑖 × 1𝑦𝑐 (𝑦𝑖 )∑𝑁−1
𝑖=1
√
𝑖

,

(16)

where 𝑖 is the time split index, 𝑦𝑐 is the prediction set where current prediction 𝑦𝑖 is consistent with
the next prediction 𝑦𝑖+1. The indicator function 1𝑦𝑐 (𝑦𝑖 ) = 1 when 𝑦𝑖 ∈ 𝑦𝑐 . 𝐹1𝑖 is the 𝐹1 score of the
prediction at the 𝑖-th time split.

7.3 Comparison with State-of-the-art Models
To demonstrate the validity of the temporal information, we compare decision tree models, namely
Decision Tree (DT) [27], Random Forest (RF) [39], and XGB [20]. Then we compare the address
graph-based models to justify the ineffectiveness of most existing graph-based for early detection.
Namely GCN, Skip-GCN, and Evolve-GCN in the reference [51]. To verify the validity of our
prediction model, we compare four sequential-based models applied in the “Early Rumor Detection”
task, namely GRU [13], M-LSTM [56], SAFE [57], CED [47], and Transformer [46]. For our
Intention Monitor, +𝐼𝑑𝑥 means we replace 𝑧𝑖, 𝑗 with [𝑧𝑖, 𝑗 | |Emb𝐼 (𝐼 𝑖𝑑𝑥𝑖,𝑗 )] in Alg 6 and Alg 8. 𝐸𝑚𝑏𝐼 is
the learnable embedding layer for intention index 𝐼 𝑖𝑑𝑥𝑖, 𝑗 as mentioned in Section 6.3.

First, as shown in Table 3, our 𝐼𝑛𝑡𝑒𝑛 −𝑀 model achieves the best performances across all three
datasets. The great improvements come from the effective features and our Intention-VAE module.
All these compared models also achieve far better performance with our path features and DT-SC
module, which will be discussed later.

For all traditional decision tree algorithms, they do not perform well on the three datasets. Because
these algorithms are difficult to encode temporal information, it is difficult for decision-tree-based
machine learning algorithms to consider shifts in the feature decision boundary. Also, the address
features can not provide efficient information for more accurate prediction, thus, even using decision
trees as the backbone, our model still improves 𝐹1𝐸 and 𝐹1𝐶 significantly compared to the best
decision-tree-based model. For address graph methods, as [33] implies, the Address-GCN may lead
to over-smoothing issues and the dilution of the minority class. In our cases, most neighbors of
malicious nodes are victims or shadow addresses. In addition, since the transaction network is usually
small in the early stage of the address, there are many shadow addresses in this network, which
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Table 3. Scores of the different prediction models. Inten-M(+Idx) are our Intention Monitor with the
intention index embedding. Underline stands for the best score in the group, bold stands for the best
score in this dataset.

Dataset Group Model 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1𝐸 𝐹1𝐶

Hack

Decision Tree
DT 0.996 0.247 0.051 0.084 0.084
RF 0.996 0.718 0.134 0.238 0.205

XGB 0.992 0.081 0.044 0.049 0.048

Address Graph
GCN 0.736 0.106 0.282 0.163 0.104

Skip-GCN 0.651 0.143 0.524 0.226 0.125
Evo-GCN 0.760 0.145 0.335 0.196 0.146

Sequential Model

GRU 0.970 0.090 0.499 0.133 0.152
M-LSTM 0.977 0.113 0.445 0.152 0.183

CED 0.980 0.115 0.401 0.154 0.181
SAFE 0.974 0.076 0.394 0.133 0.119

Transformer 0.971 0.094 0.464 0.132 0.157

Intention Monitor

Status-XGB 0.996 1.000 0.257 0.372 0.390
Action-XGB 0.996 1.000 0.233 0.370 0.387

Inten-M 0.996 1.000 0.274 0.412 0.440
Inten-M(+Idx) 0.997 1.000 0.298 0.436 0.470

Ransomware

Decision Tree
DT 0.964 0.073 0.014 0.025 0.019
RF 0.964 0.004 0.000 0.000 0.000

XGB 0.968 0.455 0.421 0.437 0.415

Address Graph
GCN 0.878 0.223 0.923 0.360 0.359

Skip-GCN 0.881 0.226 0.910 0.364 0.361
Evo-GCN 0.866 0.200 0.871 0.322 0.326

Sequential Model

GRU 0.901 0.280 0.856 0.389 0.355
M-LSTM 0.919 0.332 0.870 0.443 0.418

CED 0.921 0.329 0.846 0.442 0.415
SAFE 0.885 0.246 0.856 0.382 0.294

Transformer 0.928 0.358 0.853 0.467 0.446

Intention Monitor

Status-XGB 0.987 0.906 0.724 0.790 0.790
Action-XGB 0.987 0.910 0.719 0.791 0.780

Inten-M 0.986 0.930 0.770 0.797 0.801
Inten-M(+Idx) 0.988 0.889 0.793 0.820 0.824

Darknet

Decision Tree
DT 0.908 0.183 0.012 0.020 0.018
RF 0.909 0.468 0.013 0.015 0.016

XGB 0.913 0.571 0.203 0.291 0.278

Address Graph
GCN 0.841 0.322 0.813 0.463 0.465

Skip-GCN 0.780 0.260 0.889 0.400 0.404
Evo-GCN 0.737 0.216 0.822 0.342 0.343

Sequential Model

GRU 0.874 0.518 0.819 0.601 0.438
M-LSTM 0.880 0.528 0.822 0.612 0.449

CED 0.861 0.490 0.835 0.582 0.414
SAFE 0.828 0.418 0.865 0.557 0.343

Transformer 0.876 0.515 0.856 0.615 0.438

Intention Monitor

Status-XGB 0.940 0.796 0.694 0.720 0.608
Action-XGB 0.941 0.797 0.710 0.727 0.615

Inten-M 0.945 0.851 0.689 0.736 0.624
Inten-M(+Idx) 0.945 0.794 0.766 0.762 0.631

makes the Address-GCN models challenging to obtain valuable transaction pattern information. Thus
the models do not perform well.

Rather than focusing on the address transaction graph’s structure, sequential models encode the
temporal pattern more directly. As shown in Table. 3, compared to the best Address-GCN model,
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they have an average improvement of 9.76% and 15.78% in 𝐹1𝐸 and 𝐹1𝐶 on the three datasets. This
improvement verifies the effectiveness of temporal patterns. However, malicious behavior generally
involves many transactions, which are often not directly related to the target address. For example, the
malicious address will use many shadow addresses for transit. Therefore, the address feature cannot
reflect the actual attributes of the address in time, while our backward path feature can describe
how the funds flow into the address. Similarly, the malicious address may also transfer funds in a
certain way. The most common method is the peeling chain. Our forward path feature can provide
relevant information, which is a challenging task for address features. As shown in Table. 3, with the
intention attention module, the model can finetune the predictions of 𝑆𝑡𝑎𝑡𝑢𝑠-𝑋𝐺𝐵 and 𝐴𝑐𝑡𝑖𝑜𝑛-𝑋𝐺𝐵,
thus achieving better performance across all three datasets. Compared to the best sequential model,
our 𝐼𝑛𝑡𝑒𝑛-𝑀 model can achieve an average improvement of 93.68% and 94.04% on 𝐹1𝐶 and 𝐹1𝐸 ,
proving the great effectiveness of our path feature and corresponding feature selection. Also, the
encoding of the binarized Intention index improves the model’s performance one step further, which
justifies the boundary in the Intention-VAE module is useful for prediction.

7.4 Feature Combination and Selection
In this subsection, we evaluate the effectiveness of our path features and feature selection scheme.
We also justify the generality with compatible models.
Feature Combination. To verify the effectiveness of path features, we compare three decision tree
models, namely the address feature (AF) model, the long-term path features (+LT) model, and the
short-term path features (+ST) model. +X means add feature X to previous model. As shown in Table
4, AF performed poorly on the three datasets. Path features significantly improve the performance
for all metrics. We speculate that most malicious addresses require victims to transfer money once
they are created. It makes them similar to exchange or financial service addresses in the early stage.
For example, exchange or merchant services will also create new addresses for security. As a result,
AF model can only find those extremely abnormal addresses, which results in poor performance.
Feature Selection. Feature selection is crucial for the model’s generalization ability. To justify the
effectiveness of our feature selection scheme, we also compare the T/C model with the one without
a selection scheme +ST. Trimming scheme (T) stands for trimming off features in the deletion
list, Complement scheme (C) stands for complement features in the complement list. As shown in
Table 4, feature selection significantly improves the performances of decision trees across all the
datasets. The 𝐹1𝐶 and 𝐹1𝐸 are enhanced by an average of 13.88% and 9.33%, respectively. The major
improvement comes from the recall score. Since malicious activities behave abnormally in various
aspects, their most significant features are also different. Through our automatic feature selection
method, models can fully use the powerful path features. Also, they can adapt to different malicious
activities easily, mitigate input noise, and significantly reduce the workload of manual selection.

Since our feature selection scheme is based on the decision tree model, we implement them on
other compatible models to verify the generalization of path features and the feature selection scheme.
As shown in Table 4, our path feature and feature selection scheme improve the performance for all
models. Especially for the decision tree model, the augmented XGB model even outperforms most
sequential models.

7.5 Effect of Status&Action Cluster Number
The cluster numbers of status and action represent the granularity of address status and behavior. If
the cluster number is too small, it will limit the model’s ability to distinguish and extract adequate
information. On the contrary, if the cluster number is too large, it will introduce outliers and
deteriorate the model’s interpretability. To this end, we analyze the effect of cluster number on model
performance. We test 5 cluster numbers (4,8,16,32,64), and the results are shown in Figure 6.
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Table 4. Scores of different features (address feature (AF), long-term path features (+LT), short-
term path features (+ST), and selection schemes(trimming/complement scheme (T/C). Δ stands for
performance differentiation after applying path features and selection schemes.)

Dataset Model 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1𝐸 𝐹1𝐶

Hack

DT(AF) 0.996 0.247 0.051 0.084 0.084
DT(+LT) 0.995 0.221 0.053 0.079 0.092
DT(+ST) 0.996 0.882 0.116 0.249 0.278
DT(+T/C) 0.996 0.821 0.155 0.259 0.277

RF(Δ) +0.000 +0.282 +0.053 +0.095 +0.093
XGB(Δ) +0.004 +0.919 +0.181 +0.291 +0.333
GRU(Δ) +0.018 +0.103 -0.134 +0.089 +0.105

M-LSTM(Δ) +0.014 +0.184 -0.116 +0.114 +0.134
CED(Δ) +0.006 +0.044 -0.050 +0.037 +0.040
SAFE(Δ) +0.006 +0.025 +0.004 +0.034 +0.034
Transf.(Δ) +0.018 +0.089 -0.176 +0.067 +0.070

Ransomware

DT(AF) 0.964 0.073 0.014 0.025 0.019
DT(+LT) 0.965 0.313 0.090 0.125 0.126
DT(+ST) 0.967 0.592 0.270 0.354 0.330
DT(+T/C) 0.968 0.616 0.399 0.463 0.417

RF(Δ) +0.005 +0.926 +0.269 +0.394 +0.425
XGB(Δ) +0.014 +0.334 +0.283 +0.295 +0.313
GRU(Δ) +0.047 +0.169 -0.027 +0.146 +0.186

M-LSTM(Δ) +0.027 +0.109 -0.038 +0.087 +0.113
CED(Δ) +0.022 +0.092 -0.026 +0.070 +0.095
SAFE(Δ) +0.030 +0.065 -0.020 +0.076 +0.073
Transf.(Δ) +0.023 +0.102 -0.091 +0.067 +0.089

Darknet

DT(AF) 0.908 0.183 0.012 0.020 0.018
DT(+LT) 0.911 0.593 0.099 0.143 0.140
DT(+ST) 0.921 0.609 0.404 0.484 0.452
DT(+T/C) 0.922 0.618 0.446 0.517 0.461

RF(Δ) +0.006 +0.324 +0.428 +0.503 +0.499
XGB(Δ) +0.036 +0.206 +0.417 +0.380 +0.349
GRU(Δ) +0.041 +0.112 +0.032 +0.091 +0.094

M-LSTM(Δ) +0.036 +0.106 +0.036 +0.084 +0.085
CED(Δ) +0.053 +0.138 +0.002 +0.104 +0.118
SAFE(Δ) +0.046 +0.087 -0.030 +0.060 +0.081
Transf.(Δ) +0.035 +0.101 +0.001 +0.071 +0.084
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Fig. 6. 𝐹1𝐸 and 𝐹1𝐶 of different status and action cluster number.

As expected, models with larger cluster numbers can distinguish more states at the beginning
and perform better. However, when the cluster number increases, the model may introduce more
redundant noise, leading to poor performance. This phenomenon is particularly evident in the hack
dataset. This is because compared to other malicious types, hack addresses tend to have fewer actions,
so the diversity of their states and actions will be less. Therefore, the best cluster number is 16, and
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Fig. 7. Top-6 differentiated status and action. Labels on the x-axis stand for the index of status and
action. The value above each bar is the corresponding discrimination score.

the performance gradually deteriorates afterward. Moreover, because ransomware and darknet have
more operations or requirements for users, the optimal cluster number will be larger. For ransomware,
the best cluster number is 32 because it performs best. For darknet, we also choose 32 as the best
cluster number because the performance difference between 32 and 64 is marginal. And the model
with a smaller cluster number has better interpretability.

7.6 Status Actions and Intention
Differentiation Analysis. We select the top six with the largest differences between malicious and
regular addresses. As shown in Fig. 7, the x-axis represents the cluster index of status and action.
The y-axis is the discrimination score (the proportion difference between the positive and negative
samples divided by the sum of the proportion). A higher score means the cluster appears more in a
specific class.

We can see that some status and action clusters can be used as effective discriminant indicators for
hack and ransomware addresses. Especially for status 29 in the ransomware dataset, the discrimination
score is 1. That is to say, as long as status 29 appears in the address status sequence, the model can
confidently determine the address’s label.

As for the darknet address, since its operation method is similar to the typical trading platform,
therefore, the cluster discrimination ability is not as strong as the other two data sets. However, when
we analyze 2-gram and 3-gram (a contiguous sequence of 2 and 3 cluster indices), we found that the
order in which each cluster appears in status and action can give a higher discrimination score for
darknet addresses. On the one hand, this justifies the importance of temporal information. On the
other hand, it shows that our status and action can be well combined with timing analysis to achieve
better results.
Case Study. We use the infamous hack incident of the Binance crypto exchange on May 7, 2019, 2

in which hackers stole over 7000 BTCs worth of 40 million, as a case study to illustrate our model’s
capability to interpret prediction result and offer valuable insights into the malicious behavior.

As shown in Fig. 8 (a), our method successfully detects the 5 sample hacker addresses involved
by the end of the first 9 hours since its creation, which is 12 hours before the stolen BTCs were
transferred away. We quote from a Binance statement that "It was unfortunate that we were not

2https://www.cnbc.com/2019/05/08/binance-bitcoin-hack-over-40-million-of-cryptocurrency-stolen.html
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tree for the example hack address.

able to block this withdrawal before it was executed.", an inevitable tragedy with only retrospective
analysis but totally preventable with our early detection.

To interpret our prediction result, we first zoom into one of the hacker’s addresses bc1***6xp3. The
prediction result can be easily interpreted by examining the semantics behind the status and action
that form the intention motif. By the 16-th hour, the corresponding status and action sequences are
[1−9−9−9−9−9−9−9−9−9−9−9−9−9−9−14] and [8−8−8−8−8−8−8−8−8−8−8−8−4−8−8−13].
To interpret the semantic meaning of status and action, we build corresponding status and action
decision trees. Take status as an example. After obtaining all the status vectors via clustering, we
categorize all the statuses using the decision tree (the number of statuses is equal to the number of
categories). Each status can be interpreted by trailing the corresponding decision tree from the root
to the leaf, as shown in Fig. 8 (b).

Regarding feature 2, the status decision tree judges "when the input volume of each ST-BK path
is not very large, whether the balance can reach a certain amount." That is to say, is it in a state
of "remitting funds through multiple channels and having enough balance"? Status 1 essentially
indicates that the initial balance is very high, and the asset comes from lots of ST-BK paths. Status
9 mainly determines whether the address has transferred out the asset. As shown in Figure7, there
is already a relatively high discrimination score for statuses 1 and 9. Our model can give the
correct prediction before the end of status 9, which justifies the effectiveness of our status proposer.
Furthermore, at the 16-th hour, the address status is 14. Status 14 implies that the funds come through
multiple ST-BK paths, but the balance is insufficient. The low balance may be because the volumes
of ST-BK paths are insufficient or the address transferred out its tokens with short LT-FR paths.

As for action clusters, Action 8 is a waiting action, which is used to describe that the features
of the address are relatively stable without much change. We can also see from the figure that all
features on the decision path will not have too large or too small values. Action 4 is similar to
action-8. The main difference is that the address introduces a small amount of ST-BK path, which
leads to a significant decrease in the overall corresponding feature value. Action 13 mainly describes
the property change in the ST-FR path. As shown in Fig. 8 (b), this action describes that the address
introduces the ST-FR path, most of which are single chains, and the transfer amount is relatively
large.

3bc1qp6k6tux6g3gr3sxw94g9tx4l0cjtu2pt65r6xp
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In reality, this malicious address received a transfer of 555.997 BTCs at creation through 71 input
transitions, with no output transactions. The status sequence can also be observed in the related
transaction4, in which the hacker manipulated Binance’s address and divided it into 71 inputs, each
containing 100 BTCs. This justifies the "Multi ST-BK Paths" property of Statuses 1 and 9. The
pattern can be seen in Fig. 9. Those black edges are the ST-BK paths related to the first input transfer.
Besides, the “waiting period” is represented by action 8.

By the end of 13-th hour, it received another transfer of about 0.00008631 BTC. This tiny transaction
will not change the address’s status, but it can be reflected by action 4 as this tiny transaction
introduces an ST-BK path. After the transaction of a tiny amount, there is a bulk transfer of address’s
all BTC at the 16-th hour. By analyzing the LT-FR paths during the 16-th hour, we found the path
hop lengths are also lower than 2. Also, the introduced LT-FR paths can be reflected by action 13.
The whole evolution justifies consistency between status and the address’s real state.

Moreover, valuable insights can be acquired from our intention monitor. For example, the extremely
tiny amount of 0.00008642 BTC received by the malicious address by the end of 13-th hour is highly
likely the corroborating evidence that it is a trial transfer to test whether the transfer operation is
successful, as a specific signal transaction to coordinate and synchronize multiple addresses’ hacking
operations automatically. This was also validated by Binance’s statement in which they pointed out
that “The hackers had the patience to wait and execute well-orchestrated actions through multiple
seemingly independent accounts at the most opportune time.”

As another example, although our model has already given the prediction in the 9-th hour, combined
with the subsequent status of our proposed ST-BK path, we can even identify potentially a group of
hackers for this hacking incident. As shown in Fig. 9, the green edge is a signal transaction after 13
hours, and the amount on it is tiny but introduces one LT-BK path and two ST-BK paths. These two
ST-BK paths merged into a single track before importing to the hack address.

We back-tracked the source of the ST-BK path of the signal transaction. We found that the 21 hack
addresses that participated in this hacking incident were linked through the signal transactions. Even
more surprisingly, they have the same source coming from the address5. Our belief that multiple
addresses launched this hacking and synchronized among themselves through signal transactions
again echoes the collaborative schemes claimed in the Binance statement.

4e8b406091959700dbffcff30a60b190133721e5c39e89bb5fe23c5a554ab05ea
51GrdXZpyBfiNSVereX5t5UQRHfeh192Cc6
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Table 5. Time cost of different input data, including block number, transaction number, address
number), address feature, LT transfer path, and ST transfer path.

Block Number Transaction Number Address Number Address Feature LT-Path ST-Path

1,000 (Single-Process) 299,767 181,221 0.51h 72.53h 130.33h
1,000 (Multi-Process) 299,767 181,221 0.03h 3.82h 6.86h

Avg (Multi-Process) 300 181 0.11s 13.75s 24.70s

7.7 Scalability Analysis
Generally speaking, users only want to monitor the new and large-volume addresses that have
transactions with them. Those addresses are likely to participate in dangerous activities. Our system
will dynamically monitor and update their transaction features every hour, as shown in Fig. 3(b).
Then, the model proposes segments according to the default position and prepares the segment and
status representations. In this way, our intention monitor can predict the labels dynamically.

In addition, to verify the model’s scalability, we randomly selected 1, 000 blocks (from the first
block of 2020 to the first block of 2022) and collected the daily BTC price during this period. We filter
out transactions lower than $10, 000 and retrieve addresses with a lifespan smaller than one week. We
got 299, 767 transactions and 181, 221 addresses. To get stronger proof of the model’s scalability, we
fetch the data of the early 200 hours (larger than one week) with a one-hour interval. The time costs
under single-process and multi-process (acceleration by 20 processes) are illustrated as follows:

On average, for the early 200 hours, preparing an address feature takes 0.11s. The LT and ST path
feature take 13.75s and 24.70s, respectively. So we only need 2.42s to prepare data in every one-hour
interval.

8 CONCLUSION
This paper presents Intention Monitor, a novel framework for the early detection of malicious
addresses on BTC. After proposing two kinds of asset transfer paths, we select, complement, and
split the feature sequence for different malicious activities with a decision tree based strategy. In
particular, we propose status and action vectors to describe the temporal behaviors and global
semantic status and action. We build the Intention-VAE to propose intent-snippets and weight the
contribution of status and action backbone predictions dynamically. A survival module based on
Intention-VAE fine-tunes the weighted predictions and groups intent-snippets into the sequence of
intention motif. We quantitatively and qualitatively evaluated the model on three malicious address
datasets. Extensive ablation studies were conducted to determine the mechanisms behind the model’s
effectiveness. The experimental results show that the proposed method outperformed the state-of-the-
art baseline approaches on all three datasets. Furthermore, a detailed case study on Binance Hack
justifies that our model can not only explain suspicious transaction patterns but can also find hidden
abnormal signals.
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