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Abstract—Cryptocurrency’s pseudo-anonymous nature
makes it vulnerable to malicious activities. However, existing
deep learning solutions lack interpretability and only support
retrospective analysis of specific malice types. To address these
challenges, we propose Intention-Monitor for early malice
detection in Bitcoin. Our model, utilizing Decision-Tree based
feature Selection and Complement (DT-SC), builds different
feature sets for different malice types. The Status Proposal
Module (SPM) and hierarchical self-attention predictor
provide real-time global status and address label predictions.
A survival module determines the stopping point and proposes
the status sequence (intention). Our model detects various
malicious activities with strong interpretability, outperforming
state-of-the-art methods in extensive experiments on three
real-world datasets. It also explains existing malicious patterns
and identifies new suspicious characteristics through additional
case studies.

Index Terms—Malicious Address, Cybercrime, Early Detec-
tion, Intention-aware, Cryptocurrency, Bitcoin

I. INTRODUCTION

The growing popularity of cryptocurrency has led to a rise
in cybercrimes, such as hacking, extortion, and money laun-
dering. These criminal activities are often carried out by indi-
viduals or entities referred to as ”malicious addresses” in the
cryptocurrency realm [1], [2]. Detecting and diagnosing these
malicious addresses pose significant challenges, especially in
the case of Bitcoin, the most prominent cryptocurrency.

There are three key characteristics of cryptocurrencies that
make the detection of malicious behavior more challeng-
ing compared to traditional financial fraud detection: Early
detection is crucial due to the continuous and fast-paced
nature of cryptocurrency trading. Malicious behaviors are
often short-lived and can cause substantial damage if not
identified early. Retrospective analysis offers limited value as
it cannot prevent financial losses once the malicious activity
is completed. Manually-engineered features are insufficient
for detecting unknown types of malicious behavior or apply-
ing them to different cryptocurrencies. Malicious behaviors

in cryptocurrencies constantly evolve, requiring a more ver-
satile set of features that capture fundamental characteristics
across various types. Interpretability is essential in detecting
malicious behavior in cryptocurrency. Malicious activities
often disguise themselves as legitimate projects, making it
challenging for investors to differentiate between credible
and fraudulent ventures. Deep learning methods used for
detecting malicious activity often lack interpretability, which
is crucial for accurately identifying such behavior. Investors
and regulators require deeper insights into the underlying
intention behind malicious behavior.

To address these challenges, we propose a system called
Intention Monitor, which utilizes asset transition paths to
identify patterns indicating malicious intent. Our system
analyzes significant asset transitions between innocent and
malicious addresses to detect malicious behavior across
different types of cryptocurrencies. The proposed solution
consists of four stages: 1. Feature formation: Long-Term
(LT) and Short-Term (ST) transition paths are generated to
capture transaction patterns for both long-term and short-term
structures. 2. Feature filtering and temporal assembly: A De-
cision Tree-based Feature Selection and Complement model
(DT-SC) identifies the most powerful features for different
types of malicious behavior. The Status Proposal Module
(SPM) organizes these features into coherent segments based
on their importance scores. 3. Semantic mapping: Temporal
feature segments are mapped to global statuses through
clustering, representing the intentions of malicious behaviors
after temporal grouping by survival analysis. 4. Intention
motif as prediction witness: A hierarchical transformer with
a survival module predicts malicious addresses in real-time.
The survival module segments the status sequence into in-
tention motifs, which serve as a witness to the prediction
result.

In summary, this paper’s key contributions are as follows:
We propose two novel definitions of asset transfer paths
that effectively capture Bitcoin transaction patterns for early



malice detection and can be applied to other cryptocurrencies,
enabling the model’s versatility across different types of
malicious behavior. We provide interpretability for our malice
detection results using intention motifs as prediction wit-
nesses, which is not achievable by deep-learning-dominated
models. Interpretability is facilitated through a decision tree-
based strategy for feature selection and assembly, as well as
a hierarchical transformer encoder with a survival module
for grouping statuses into a sequence of intention motifs.
We conduct extensive evaluations and achieve significantly
better performance than the state-of-the-art on three malicious
datasets. Additionally, we present a deep-dive case study on
the 2017 Binance hack incident, illustrating corroborating
transaction patterns and uncovering hidden insights for early-
stage malice detection that would otherwise be unattainable.

II. RELATED WORK

Existing malicious address detection methods can be cat-
egorized into three groups based on the types of features
utilized:
Case-Related features: These features focus on modeling
addresses and activities in specific events. Examples include
combining topological structures with IP addresses to inves-
tigate theft cases [3], using transaction-graph annotation sys-
tems to extract information from social media [4], and linking
users to hidden services with social media [5]. While Case-
Related features provide valuable insights in case studies,
their generalizability to other issues is limited.
General address features: Machine learning techniques are
commonly employed in this category for malicious activity
detection [6]. Examples include using time and transaction
value to reveal address identities [7], performing temporal
analysis to identify repeating patterns [8], detecting Ponzi
schemes on ETH using address features and operation codes
[9] [10], and classifying entities involved in cybercriminal
activities [11]. General address features significantly enhance
the model’s generality, although characterizing asset inflow
and outflow remains challenging.
Network-based features: Cryptocurrencies inherently pro-
vide transaction networks between addresses. Network-based
methods utilize these networks for detection purposes. Exam-
ples include detecting suspicious users using power degree
laws and local outlier factor [12], analyzing motifs in directed
hypergraphs [13], and detecting BTC mixing service ad-
dresses using temporal motifs [14]. Network-based methods
perform well for retrospective analysis, leveraging structural
information encoded in the trading network. However, in the
early stages, when the trading network is small, discrimina-
tive topological structures may not be formed.

In summary, each category has its strengths and limitations
in terms of interpretability, generalizability, and applicability
to early-stage detection.

III. PROBLEM FORMULATION

A BTC transaction tx has a set of inputs I= {i1, i2, . . . i|I|}
and outputs J= {j1, j2, . . . j|J|}. The essences of input and
output are still transactions. tx records token distribution

between I and J . The incoming tokens will flow into
a pool and then to the outgoing transactions according
to the prior agreement proportion. There is no record of
how many tokens flow from an Input i to an Output j.
Thus, we have to build a complete transaction bipartite
graph in tx and get total |I| × |J | transaction pairs. Let
Dtm={ditm}Ni=1={(li, T i

in,tm
, T i

out,tm)}Ni=1, where li ∈ {0, 1}
is the label of Address i, and 0 or 1 stands for the label
of regular and malicious. T i

in,tm
=[txi

in,1, tx
i
in,2, . . . tx

i
Nin,tm

]
is the set of all transactions with Address i as the input
address by the tm-th time step, and T i

out,tm is the set of all
transactions with Address i as the output address by the tm-
th time step. For ease of understanding, we denote these two
transaction sets as Receive set and Spend set, respectively.
Given a set of addresses A, and Dtm at tm-th time-step, the
problem is to find a binary classifier F such that

F (ditm) =

{
1 if Address i is illicit
0 Otherwise

. (1)

IV. ASSET TRANSFER PATH

In the early stages of malicious behaviors, the address-
based network may not have grown to a size that allows
for credible predictions. Instead, the transaction flow itself
can provide crucial information. As mentioned in Sec. III,
each BTC transaction consists of |I| × |J | transaction pairs.
However, not all transaction pairs are relevant for malicious
address detection. The significant transactions, which make
up a considerable portion of the total transaction amount,
play a crucial role. Fig. 1 illustrates the concept of asset
transition paths. Each node represents a transaction, and the
labels LT , ST , FR, and BK represent Long-Term, Short-
Term, Forward, and Backward, respectively. The transaction
nodes within the dashed gray box represent transactions in
which the given address is involved. In this example, the
left node represents a transaction where the address receives
tokens from other transactions, referred to as the address’s
”Receive Transaction.” In this specific transaction, there are
three inputs contributing 5%, 70%, and 25%, respectively,
to the total transaction amount. Similarly, the right node
represents a transaction where the address spends its tokens
to the outputs, known as the address’s Spend Transaction.

A. Influence and Trust Transaction Pair

Let I = i1, i2, . . . , i|I| be a set of |I| spend transactions to
a receive transaction j. We define an Influence Transaction
Pair as follows: given an influence activation threshold θ,
(ik, j) is called an Influence Transaction Pair for trans-
action j if there exists a k (1 ≤ k ≤ |I|) such that the
amount of transaction pair (ik, j) contributes at least a certain
proportion of the received amount of transaction j, i.e.,
Â(ik, j) ≥ θ×Â(I → j), where Â(·) denotes the amount of a
transaction pair or the sum of all transaction pairs. Similarly,
let J = j1, j2, . . . , j|J| be a set of |J | transactions, and let
i be a transaction. We define a Trust Transaction Pair for
transaction i as follows: if there exists a receive transaction
jk (1 ≤ k ≤ |J |) such that transaction i transfers at least a
certain proportion of its spend amount to jk, the transaction
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Fig. 1. (a) Address transaction flow and Asset transfer paths. (b) Evolution
of Asset Transfer Path. New asset transfer paths are generated if the address
participates in new transactions. Forward paths can be extended if asset flows
within the late stage.

pair (i, jk) is called a Trust Transaction Pair for transaction
i, indicating a form of trust from i to jk in terms of asset
transfer.

Given an influence transaction pair (ik, j), we can con-
clude that transaction j obtains a significant amount (based on
the threshold) of the asset from transaction ik. Furthermore,
if there exists a sequence of transaction pairs satisfying the
following conditions: (I) each pair is an influence transaction
pair, (II) the spend transaction of each pair is the receive
transaction of the previous pair, and (III) the receive transac-
tion of the last pair is transaction j, we call such a sequence a
Backward Path for transaction j. It reveals the source of the
asset for transaction j. Similarly, we can define a Forward
Path to trace the destinations of transaction i’s asset flow.
For simplicity, both the Backward Path and Forward Path
are referred to as Asset Transfer Paths, and the activation
threshold in both directions is denoted as the activation
threshold.

B. Long-Term and Short-Term Path

To simplify, we use the terms Asset Transfer Paths to refer
to both the Backward Path (BK) and Forward Path (FR), and
the term activation threshold to denote the threshold in both
directions. To capture transaction patterns at both macro and
micro levels for the Asset Transfer Paths, we introduce two
types of time spans: long-term (LT) and short-term (ST). The
LT asset transfer paths have a larger maximum observation
period and a higher activation threshold. They are designed
to identify the primary source of assets in a transaction. On
the other hand, the ST asset transfer paths have a shorter
observation period and a lower activation threshold. They
provide insights into transition patterns and structures within
a shorter time frame.

V. FEATURE SELECTION AND COMPLEMENT & STATUS
PROPOSAL MODULE

A. Address & Transaction Features

We utilized 16 address features to capture address be-
haviors. Additionally, to characterize a specific path set,
we selected 13 path features from four perspectives: (1)
path number, (2) path length (hop/height), (3) maximum
(minimum) input (output) amount (quantity) for each node
on the path, and (4) maximum (minimum) activation score
of the path. To represent the overall properties, we computed

the maximum (max), minimum (min), average (avg), and
standard deviation (std) values for each feature, except for
the path number. This results in a total of 49 path features
for a single path set, hence a total of 196 path features (49
* 4) as an address has four path sets.

B. DT-based feature Selection and Complement

In this module, we have three sets: complement list, reserve
list, and deletion list. In the initial round, address features and
all path features’ mean values are set as seed features. We
feed these features into the decision tree model and select
the best-performing (the performing score will be elaborated
in Sec. VII-B) model from 10 independent training models.
We sort the model’s feature importance scores and denote the
maximum importance score as sMimp. Given a feature j with
an importance score simp,j , if simp,j≥θ*sMimp, we append it
into the complement list. θ is the complement threshold. If
0 < simp,j < θ*sMimp, we append it into the reserve list. If
simp,j=0, we append it into the deletion list.

In the second round of training, we first complement
the features in the complement list. Here, by complement,
we mean including its maximum, minimum, and standard
deviation. Then, we append reserve features to the input
feature list and delete features in the delete list.

C. Status Proposal Module

To describe an address’s behaviors, we propose the Status
Proposal Module (SPM). A status is a segment where fea-
tures should be stable enough.We calculate all addresses’ all
features’ average change ratio and denote the highest change
ratio as CH and the change ratio at the j-th time step as Cj .
If Cj > θ ∗CH , the former stable segment ends, and we add
the corresponding time step j to the splitting time list.

We then define segments representation to represent these
segments. Due to the feature temporal shifting, we train a
decision tree on each segment. For the j-th segment of a
single address, we record its beginning and end time points
as bj and ej , and the corresponding feature sequence as
[fbj , ..., fej ], where fi is the feature vector at i-th hour. The
feature importance score list of the corresponding decision
tree for the j-th segment is Simp,j in which each element
stands for the importance score for the corresponding feature.
Then address’s segment vector of this period is calculated as
follows:

gj = Simp,j ∗
ej∑

i=bj

fi/(ej − bj). (2)

we cluster all addresses’ all segment representations as the
status vectors to obtain status clusters with global semantic
meanings. We then build a status decision tree to label the
status for the input segment vector. Finally, each address
has three vector sequences, namely features, segments, and
statuses.

VI. HIERARCHICAL SURVIVAL TRANSFORMER

A. Hierarchical Transformer Encoder

The decision tree group fails to utilize temporal patterns,
and the subsequent redundant noise will make the prediction
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Fig. 2. The overview of Decision Tree based feature Selection and Complement (DT-SC) and Status Proposal Module (SPM).

inconsistent. Thus we propose the Hierarchical Survival
Transformer to tackle these issues. For the p-th segment,
we denote the beginning and ending time points as bp and
ep, respectively. In this segment, an address has ep-bp+1
features {fi}e

p

i=bp (fi ∈ Rd), one segment vector gp ∈ Rd

and the index of status op, where d is the feature dimension.
We transform the status index into a learnable embedding
vector via embedding up. To select the most representative
information inside a segment, we use an attention layer to
focus on those significant time steps and prepare the weighted
feature vector fp.

To encode these three representation vectors, we apply a
multi-head self-attention encoder with Nh parallel indepen-
dent heads. Take feature-level self-attention as an example.
After multi-head self-attention, the feature list by the p-th
segment is F p can be defined as follows:

F p = {f̂ i}pi=1 = Concat(Hp
1 , · · · , H

p
h, · · · , H

p
Nh

)WO.
(3)

Both the segment and status self-attention encoder are per-
formed in the similar way. the only difference is that we
bridge feature, segment and status hierarchically with fully
connected layers. g̃i and ũi is given by:

g̃i = W gtanh(W f,g[gi, f̂ i]),

ũi = Wutanh(W g,u[ui, ĝi]),
(4)

where [·, ·] stands for concatenation, ĝi is the segment repre-
sentation at the i-th split after self-attention. W f,g,W g,u ∈
Rd×2d and W g,Wu ∈ Rd×d are learnable matrices. After
encoding all the three levels of representations, the final
output vector ūp is given by the averaged feature vector of
the final self-attended status sequence Up = {ûi}pi=1. Finally,
based on ūp, the model gives the final prediction yp of the
p-th splitting period with a learnable fully connected layer.

B. Survival Prediction Analysis

A robust predictor should perform better consistency and
robust to noise in the late stage. Thus, we resort survival
analysis to boost our hierarchical transformer predictor. As in
survival analysis [15], the survival function S(t) of an event
represents the probability that this event has not occurred by
time t. Here, we define the event as “the model has collected
enough information to predict the address label”. Since, the
observation time is discrete in our case, we use t to denote

a timestamp. The association between S(t) and λt can be
calculated as:

S(t) = exp(−
t∑

k=1

λk), λt = ln(1 + exp(Whzūp)),

(5)
where Whz is the linear projection matrices. A softplus(x) =
ln(1+ exp(x)) function is usually deployed to guarantee the
hazard rate is always positive. Thus, the final prediction ŷt

at t-th split is given by:

ŷt = S(t) ∗ yt + (1− S(t)) ∗ ŷt−1. (6)

The survival analysis can accelerate the prediction and
group statuses into an intention sequence. The time step
when the survival probability equals 0 is tdie, and the status
sequence {ûi}tdiei=1 as the addresses’ intention sequences.

C. Consistent and Early Boost Loss Function

For an address i at t-th segment, model should give the
correct prediction and consistent with the previous prediction.
the negative logarithm prediction lossP and the consistency
loss lossC are defined below:

lossPi,t = (li − 1) ∗ log(ŷti)− li ∗ log(1− ŷti),

lossCi,t =

{
0 (ŷti − 0.5) ∗ (ŷt−1

i − 0.5) >= 0.

1 else,

(7)

To accelerate prediction speed and ensure early detection,
we introduce an earliness loss denoted as lossE . The goal
is to minimize the survival probability at each time split.
For Address i at Time Split t, the earliness loss lossEi,t is
equal to the survival probability Si(t). However, predicting
the correct labels at the early stage is challenging due to
limited data availability. The model can be influenced by
incorrect predictions during this period. To mitigate this issue,
all loss components are weighted by

√
t, where t represents

the time step. The overall loss function is defined as follows,
considering N as the number of training samples, and γ1 and
γ2 as the coefficients used to weight each loss component:

L =

tM∑
t=1

N∑
i=1

√
t(lossPi,t + γ1loss

C
i,t + γ2loss

E
i,t). (8)

VII. EXPERIMENT AND ANALYSIS

A. Data Preparation

Raw Data and Label Collection For higher high credibility,
we only select data verified by many participants from the
1-st block to the first block of 2020. To get the labels for
three different types of malicious addresses, namely, Hack,



Ransomware, and Darknet. We performed a manual search
on public forums, datasets, and prior studies [16] and [14].
For regular addresses, we collected four types of addresses
as “negative samples”, namely Exchange, Mining, Merchant,
and Gambling. The negative dataset is also augmented as
prior study [14]. The positive smaple number for different
malicious types are 341, 1903, and 7696. The negative smaple
numbers are 79765, 50617, and 89318. The segment numbers
for different malicious types are 27, 34, and 36.

B. Settings and Metrics

We used the first 200 hours of data with a 1 hour interval
for training. The max time spans for LT and ST paths are
one week and one day, respectively. We set 0.5 and 0.01 as
the thresholds for LT and ST paths. We averaged the metrics
(accuracy, precision, and recall) on all time steps. And we
introduced the early-weighted F1 score F1E and consistency-
weighted F1 score F1C to evaluate early detection and
consistency of the prediction.

F1E =

∑N
i=1 F1i/

√
i∑N

i=1 1/
√
i

,

F1C =

∑N−1
i=1

√
i× F1i × 1yc

(yi)∑N−1
i=1

√
i

,

(9)

where i is the time split index, yc is the prediction set in
which (yi − 0.5) ∗ (yi+1 − 0.5) > 0. 1yc

(yi) = 1 when
yi ∈ yc. F1i is the F1 score at the i-th time split.

TABLE I
SCORES OF DIFFERENT FEATURES (ADDRESS FEATURES (AF),

LONG-TERM AND SHORT-TERM PATH FEATURES (+LT/ST), AND
SELECT / COMPLEMENT SCHEME (S/C), +X MEANS ADD X TO

PREVIOUS MODEL

Model Acc. Prec. Rec. F1C F1E

H
AF 0.997 0.863 0.164 0.284 0.246

+LT/ST 0.996 0.737 0.192 0.303 0.303
+S/C 0.997 0.831 0.207 0.331 0.323

R
AF 0.971 0.457 0.056 0.085 0.076

+LT/ST 0.973 0.624 0.220 0.309 0.290
+S/C 0.974 0.604 0.290 0.387 0.349

D
AF 0.932 0.628 0.292 0.436 0.287

+LT/ST 0.933 0.639 0.398 0.497 0.427
+S/C 0.933 0.613 0.455 0.528 0.470

C. Feature Selection and Component Contribution

As shown in Table I, path features +LT/ST significantly
improve performance, as most malicious addresses require
victims to transfer money with particular requirements. More-
over, feature selection can mitigate the input noise and
substantially improves F1C and F1E scores by an average of
13.6% and 12.3%, respectively. Besides, As shown in Fig. 3,
the proportion difference is relatively small for single status
(1-Gram), and it becomes bigger when we analyze 2 grams or
3 grams. This means the status sequences can reflect different
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Fig. 3. Top-5 differentiated status n-gram. The value above each bar is the
n-gram proportion difference between the two classes.

addresses’ intentions. The proportion difference justifies the
effectiveness of temporal patterns.

D. Performance Analysis

As shown in Table II, to demonstrate the validity of
the temporal information, we compare XGB [17]. Then we
compare the address graph-based models, Namely Evolve-
GCN [18]. To verify the validity of our prediction model, we
compare four sequential-based models applied in the “Early
Rumor Detection” task, namely M-LSTM [19], SAFE [15],
and CED [20]. In addition, we perform a set of ablation
studies to verify the modules’ effectiveness. H-T means
we only use the hierarchical transformer encoder. +Imp
stands for using the importance scores of each segment
decision tree. As shown in Table. II, XGB does not perform
well as they cannot encode temporal information due to
distribution shifting. For Address Graph methods, the address
GCN may lead to Over-Smoothing issues and the dilution
of the minority class.For the sequential model, M-LSTM
have great improvement compared to non-sequential model.
However, the SAFE model cannot rectify the previous wrong
prediction, resulting in lower precision scores. Besides, CED
models cannot use previous predictions directly and thus
cannot guarantee prediction consistency. On the contrary,
the H-T model achieves an average improvement of 5.00%
and 4.92% on F1C and F1E . Further improvement can be
achieved by the survival analysis module and the importance
score, compared with the H-T model,

E. Dynamically Predict and Scalability

Our system dynamically updates transaction features to
predict labels, as shown in Fig. 1(b), and is scalable. We ran-
domly selected 1, 000 blocks (from 2020 to 2022), collected
daily BTC prices, and filtered transactions and addresses.
According to experiments, only 3.7s is required for data
preparation during each one-hour interval for each address.
Our model is primarily used for predictions within 200 hours,
but it can still perform well beyond that if users generate
segments based on feature change ratios without importance
scores. As shown in Table II, our model still outperforms
others.



TABLE II
PERFORMANCE COMPARISON. BOLD STANDS FOR THE BEST SCORE IN ALL GROUPS.

Model
Hack Ransomware Darknet

Acc. Prec. Rec. F1C F1E Acc. Prec. Rec. F1C F1E Acc. Prec. Rec. F1C F1E

XGB 0.996 0.834 0.223 0.351 0.349 0.975 0.622 0.342 0.437 0.415 0.940 0.666 0.475 0.578 0.502

Evo-GCN 0.760 0.145 0.335 0.196 0.146 0.866 0.200 0.871 0.322 0.326 0.737 0.216 0.822 0.342 0.343

M-LSTM 0.997 0.574 0.998 0.725 0.731 0.986 0.716 1.000 0.834 0.835 0.907 0.465 0.890 0.575 0.620

SAFE 0.997 0.610 1.000 0.758 0.757 0.985 0.711 1.000 0.831 0.831 0.871 0.363 0.848 0.481 0.512

CED 0.987 0.339 0.695 0.379 0.474 0.986 0.724 0.985 0.827 0.837 0.903 0.453 0.904 0.565 0.615

H-T 0.997 0.615 1.000 0.762 0.762 0.986 0.722 1.000 0.838 0.838 0.930 0.540 0.872 0.642 0.674

+Imp. 0.997 0.634 1.000 0.776 0.776 0.988 0.747 1.000 0.855 0.855 0.941 0.594 0.833 0.668 0.701
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Fig. 4. Sample’s status decision tree and survival probability.

F. Case Analysis

Our study utilizes the Binance hack of May 7, 20191.
The hacker address(bc1q***v3wm) was detected by our
method within the first 9 hours, 12 hours before the stolen
bitcoins were transferred. As shown in Fig. 4, this prediction
was based on the status sequence [0-0-9-5-0-9-0-0-0], which
indicates that the asset associated with the address came from
a single source and there were no spend transactions. Status 0
essentially indicates (I) The asset associated with the address
comes from a single source, and (II) No spend transaction
(A small F4 means no transaction). Status 9 indicated that
the asset had been obtained from a single source but through
a sequence of transitions. Status 5 confirmed that there were
no spend transactions after receiving the initial asset from a
single source. The malicious address received a transfer of
567.997 BTCs at creation through 71 input transitions. By the
13th hour, it received another transfer of about 0.00008642
BTC, followed by a bulk transfer of all its BTC assets at the
21st hour.

VIII. CONCLUSION

This paper introduces a novel framework for early de-
tection of malicious addresses using asset transfer paths,
segment and status vectors, and a hierarchical transformer
with a survival prediction module. The model’s effectiveness
was evaluated, and a detailed case study demonstrated its
ability to identify suspicious transaction patterns and hidden
abnormal signals.
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