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Abstract
Existing generative pre-trained language models
(e.g., GPT) focus on modeling the language struc-
ture and semantics of general texts. However, those
models do not consider the numerical properties of
numbers and cannot perform robustly on numeri-
cal reasoning tasks (e.g., math word problems and
measurement estimation). In this paper, we pro-
pose NumGPT, a generative pre-trained model that
explicitly models the numerical properties of num-
bers in texts. Specifically, it leverages a prototype-
based numeral embedding to encode the mantissa
of the number and an individual embedding to en-
code the exponent of the number. A numeral-aware
loss function is designed to integrate numerals into
the pre-training objective of NumGPT. We conduct
extensive experiments on four different datasets to
evaluate the numeracy ability of NumGPT. The ex-
periment results show that NumGPT outperforms
baseline models (e.g., GPT and GPT with DICE)
on a range of numerical reasoning tasks such as
measurement estimation, number comparison, math
word problems, and magnitude classification. Ab-
lation studies are also conducted to evaluate the
impact of pre-training and model hyperparameters
on the performance.

1 Introduction
Pre-trained models such as GPT [Radford et al., 2018, 2019;
Brown et al., 2020] and BERT [Devlin et al., 2019; Liu et
al., 2019; Lan et al., 2019] have made remarkable achieve-
ments in natural language processing. Through fully utilizing
a large-scale unlabeled corpus, they have successfully gained
state-of-the-art results in various kinds of natural language
understanding tasks, such as GLUE [Wang et al., 2019b] and
SuperGLUE [Wang et al., 2019a].

Despite their inspiring performance in natural language
understanding, these pre-trained language models still cannot
do consistently well with tasks involving numbers [Thawani
et al., 2021]. For example, as shown in Fig. 1, the confidence
for GPT answering the questions related to the weight of an
egg tends to oscillate with the changes of answers. It exposes
that GPT does not fully learn the continuous property of the

Figure 1: The confidence for GPT answering the questions related to
the weight of an egg. The fluctuated curve reflects that GPT does not
capture the continuous property of numbers.

numbers regarding certain context. Some researchers [Wallace
et al., 2019; Thawani et al., 2021] regard it as numeracy ability.
Their research has also confirmed that the large pre-trained
model still cannot handle numerical information very well.
The lacking of numeracy ability hinders those models from
performing well on tasks requiring numeracy [Wallace et al.,
2019], which is prevalent in real world problems.

A line of work has proposed methods to improve the nu-
meracy ability of the neural model. For example, Geva et al.
[2020] improve the numeracy via generating more training
data including numbers. Zhang et al. [2020] transform the
number in the text into a scientific notation form. However, it
does not guarantee that the models can learn numerical knowl-
edge from the perspective of magnitude and mathematical
notation. Other studies attempt to design a numeral embed-
ding to improve the numeracy ability. They demonstrate that
their designed embeddings can perform well in probing tasks
on numeracy [Jiang et al., 2019; Sundararaman et al., 2020].
However, none of them pre-trains their model with numeral
embeddings on a large corpus in a self-supervised manner.
Therefore, we want to seek suitable numeral embeddings and
incorporate them in pre-training large-scale language models.

Inspired by previous work [Jiang et al., 2019; Sundarara-
man et al., 2020; Zhang et al., 2020], we propose NumGPT, a
general autoregressive language model that uses a prototype-



based embedding to encode the mantissa (or significand) of
the number and separate embeddings to encode the exponent
of the number. We believe the inductive bias introduced by
the numerical embedding will allow the model to present the
precision and magnitude of numbers separately and gener-
alize better on the numeric related tasks. We also design a
numeral-aware loss function which enables the model to gen-
erate numbers as well as regular text tokens. To evaluate the
performance of NumGPT, we synthesize several classification
tasks such as measurement estimation, number comparison,
and simple arithmetic problems. We also conduct experiments
on a real dataset which focuses on magnitude classification,
called Numeracy-600K [Chen et al., 2019] to evaluate the
numeral predictive ability of our model. Experiments demon-
strate that our methods outperform the baseline models includ-
ing GPT and GPT with DICE [Sundararaman et al., 2020].
We further evaluate the generated text of NumGPT on a subset
of the math word problem dataset, showing that our methods
can generate better numerals. Ablation studies on the effect of
pre-training and model hyperparameters are conducted to test
whether they have a large impact on the model performance.

Our contributions can be summarized as follows:
• We propose a novel NumGPT model, which integrates

the specifically designed numeral representations and
loss function into the GPT model.

• We evaluate the numeracy ability of models on a series
of synthetic and real-world tasks, and NumGPT achieves
superior performance among them.

2 Methods
We focus on improving the numeracy ability of GPT in the
two stages of the training process, i.e., pre-training and fine-
tuning. The workflow includes pre-processing the numerals
in the corpus, pre-training NumGPT with a numeral-aware
language modeling loss, and fine-tuning the model on the
domain-specific dataset. In the following sections, we will
introduce our methods including numeral parser, numeral em-
bedding, the architecture of NumGPT, and numeral-aware loss
function.

2.1 Numeral Parser
The first step is to pre-process the numerals in text. We design
a simple numeral parser to transform the common numerals
in the text to the required format. It will be marked and
further encoded by numeral embeddings. In real-world data,
there exist many kinds of numerals [Ravichander et al., 2019]
and we mainly focus on three typical types: number, number
with commas, and percentage. For example, "2300", "2,300"
should be parsed to 2300. "23%" should be parsed to 0.23.
Besides, we adopt Byte-Pair Encoding (BPE) [Sennrich et
al., 2016] to tokenize the regular text. After pre-processing
the data, the output includes a binary label with each element
indicating whether the corresponding element is a (textual)
token or a numeral.

2.2 Prototype-based Numeral Embedding
For GPT, the token IDs will be transformed to embeddings
through an embedding matrix. However, in terms of numerals,

regular embeddings would not suffice. The reason is that
numbers are usually continuous and follow ordered relations,
for example, they can be sorted based on their magnitude.
In regular GPT, numerals are segmented into one or more
independent subword units, which makes it cumbersome to
learn the correct relation between numerals. Therefore, we
need to design specific representations for the numerals so as
to model them in an approximately continuous space.

Recent research has proposed using a deterministic ap-
proach [Sundararaman et al., 2020] or calculating the weighted
average of prototype embedding to determine the embedding
of numeral [Jiang et al., 2019]. Another work transforms
numbers into the form of scientific notation to improve the
model capability of capturing scale information [Zhang et al.,
2020]. Inspired by these work, we design a hybrid approach
to embed the numerals which can capture the scale as well as
the precision in a continuous manner.

For a numeral n, we will first transform it into a scientific
notation and determine its exponent e(n) ∈ Z and mantissa
f(n) ∈ (−10, 10), as shown in Equation 1.

n = 10e(n) × f(n). (1)

For example, −123 can be transformed to −1.23×102. Its ex-
ponent, denoted as e(−123), is the 2, and its mantissa, denoted
as f(−123), is −1.23. Based on the mantissa and exponent of
the number, we calculate the numeral embedding NE(n) ∈ Rd,
where d is the dimension of numeral embedding. We encode
the mantissa and exponent of the number separately, as shown
in Equation 2 and Fig. 2(a).

NE(n) = [NEe(e(n)),NEf (f(n))], (2)

where NEe(e(n)) ∈ Rde is the exponent embedding, and
NEf (f(n)) ∈ Rdf is the mantissa embedding. df and de
are dimensions of mantissa and exponent embeddings respec-
tively, and d = de + df . In the current implementation, we
empirically set de = d/4, df = 3d/4. For the number −123,
its embedding is NE(−123) = [NEe(2),NEf (−1.23)]. We
use different strategies to embed mantissa and exponent in the
numeral embedding.

Considering that the exponent is an integer, we associate
a learnable embedding vector NEe(e(n)) ∈ Rde to each
integer in the typical range of common numbers, that is
{−8,−7, .., 11, 12}. For the exponent larger than 12 or less
than −8, we set it to +INF and −INF respectively, as the
signs of overflow and underflow for the model.

Since the mantissa is a real number, we choose a different
embedding function for it. Similar to previous work [Sun-
dararaman et al., 2020; Jiang et al., 2019], we adopt the
deterministic approach and the prototype-based method to
define the mantissa embedding. We denote the prototypes as
{qfi }

df−1
i=0 where qfi ∈ [−10, 10]. Each value of the mantissa

embedding is calculated based on the distance between the
mantissa and each individual prototype. The formula is shown
in Equation 3.

NEf
i (f(n)) = exp

(
−∥f(n)− qfi ∥2

σ2

)
(3)
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Figure 2: The model architecture of NumGPT: (a) We use prototype-based embedding to encode the mantissa of the numeral and use an
individual embedding to encode the exponent of the numeral; (b) The numeral embedding and token embedding are fused in the input
embedding layer; (c) NumGPT has four heads to control the output. If the Selector Head signals that it is a token, then it will use the Token
Head to output a token. Otherwise, it will use Mantissa Head and Exponent Head to output a numeral.

where σ is a hyperparameter controlling the smoothness of
the mantissa representation. In this work, we simply use
prototypes uniformly distributed in [−10, 10]:

qfi =
10− (−10)

df − 1
× i+ (−10) (4)

2.3 NumGPT
After deriving the numeral embedding, we can incorporate
it into the pre-trained language models, or more specifically,
GPT in this work. The architecture of GPT is based on the
Transformer decoder. It can be formulated as three modules,
i.e., the embedding layer, Transformer layers, and the output
layer. The major difference between NumGPT, which is our
proposed model, and GPT lies in the input embedding layer
and the design of the output layer, as shown in Fig. 2(b) and
Fig. 2(c) respectively.
Input Embedding Layer. In the design of the original Trans-
former [Vaswani et al., 2017], it derives the input embed-
ding through adding the token embedding and position em-
bedding. Then it will be passed to the Transformer layer
h = Transformer(E(xt)) ∈ Rdh , where dh is the hidden
size and h is the hidden state. Consider the token embedding
function as TE(xt) ∈ Rdh and the position embedding func-
tion as PE(xt) ∈ Rdh , the output of input embedding layer

E(xt) ∈ Rdh is shown in Equation 5:

E(xt) = TE(xt) + PE(xt), (5)

where t ∈ {1, 2, .., T} is the position in the sequence x and T
is the length of sequence.

For NumGPT, we modify the input embedding layer to in-
corporate the numeral embedding for numbers. A paradigm is
to concatenate the token embedding and the numeral embed-
ding and then use a linear layer to transform it into the same
size of hidden states. The formula is shown in Equation 6.

E(xt) = [TE(xt),NE(xt)]Wb + PE(xt), (6)

where Wb ∈ R(dh+d)×dh denote parameters of the linear
transformation. Since the token xt in the sequence can be
textual or numeral exclusively, when the token is textual, its
numeral part NE(xt) becomes a learnable embedding shared
among all the textual tokens. When the token is a numeral,
the textual part TE(xt) for the token becomes a learnable
embedding shared across all the numerals.
Output Layer. In general, the output probability of the next
token follows a mixture model:

p(xt|x1:t−1)

=p(zt = 1|x1:t−1)p(xt|x1:t−1, zt = 1)

+ p(zt = 0|x1:t−1)p(xt|x1:t−1, zt = 0), (7)



where zt = 0 indicates a textual token and zt = 1 represents a
numeral token. In the output layer, we decouple each part and
model them separately. First, we use Selector Head to output
the probability of token types. It can be calculated as follows:

p(zt|x1:t−1) = softmax(htWz). (8)

where ht ∈ Rdh is output hidden state and Wz ∈ Rdh×2 is
the parameter matrix.

Then, if the Selector Head predicts the next token as textual,
the Token Head will output the probability of the next tokens
P(h) ∈ RT×|V |, as shown in Equation 9.

p(xt|x1:t−1, z = 0) = softmax(htW ), (9)

where W ∈ Rdh×|V | is the parameter matrix, and |V | is the
size of vocabulary.

For a numeral token xt, we decompose it into two parts
[xe

t , x
f
t ], which correspond to exponent and mantissa. They

are regarded as independent variables and their marginal prob-
abilities are modeled as:

p(xe
t |x1:t−1, zt = 1) = softmax(htWe) (10)

p(xf
t |x1:t−1, zt = 1) =

1√
π
exp(−(xf

t − htWf )
2) (11)

where We ∈ Rdh×|Ve| and Wf ∈ Rdh×1 are parameter matri-
ces, and |Ve| is the size of exponent vocabulary. htWf can be
regarded as the mantissa of the predicted numeral.

2.4 Numeral-aware Loss Function
Finally, we obtain a numeral-aware language modeling loss
function to pre-train the model:

L = −
T∑

t=1

[log p(zt|x1:t−1)

+ I(zt = 0) log p(xt|x1:t−1, zt = 0)

+ I(zt = 1) log p(xe
t |x1:t−1, zt = 1)

+ I(zt = 1) log p(xf
t |x1:t−1, zt = 1)]. (12)

3 Experiments
To evaluate the effectiveness of NumGPT in understanding
numeracy, we conduct the following experiments. Inspired by
previous evaluation methods [Hosseini et al., 2014; Talmor et
al., 2020; Zhang et al., 2020], we first synthesize three datasets
as Synthetic Tasks to evaluate the numeracy ability of models.
We further demonstrate the application of NumGPT in the
magnitude classification task [Chen et al., 2019]. Ablation
studies are designed to investigate whether pre-training and
the hyperparameters of NumGPT have a great impact on the
performance of models.

3.1 Synthetic Tasks
We first compared NumGPT with baseline approaches, in-
cluding GPT, GPT with DICE [Sundararaman et al., 2020],
on three synthetic tasks: Multiple Measurement Estimation
(MME) task, General Number Comparison (GNC) task, and
Math Word Problem Addition and Subtraction (MWPAS) task.

We create tens of templates for the tasks and sample ran-
dom numbers to fill in the template. We frame those tasks
as a binary classification problem, which judges whether the
question-answer pair or the sentence is "correct" or not. We
evaluate the model by calculating accuracy in the test dataset.
We illustrate them one by one in the following paragraphs.
Multiple Measurement Estimation. Inspired by the mea-
surement estimation task proposed by Zhang et al. [2020], we
design the MME task to verify whether models can learn
to estimate objects’ numerical attributes. We construct a
question-answer pair and let the model judge whether the
answer matches the question. One question template is "How
many grams are [INT] [OBJ]?" and we will sample a random
integer to fill in "[INT]" and an object, such as "egg", to fill
in "[OBJ]". We assume that the range of "correct" answer is
[ANS_MIN,ANS_MAX]. We limit the range of "incorrect" an-
swers in [0.01×ANS_MIN,ANS_MIN)∪ (ANS_MAX, 100×
ANS_MAX]. For example, a question is "How many grams are
2 eggs?" and the answer range for this question is [70, 140].
If we input this question with the answer "35" to the model,
the model should classify this question-answer pair as "in-
correct". If the input answer is changed to "80", the model
should classify this question-answer pair as "correct". For the
dataset of this task, we have crafted 20 objects and 4 question
templates. When generating one sample, we randomly sample
a question template from candidate question templates, use
the logarithmic sampler to sample the multiplier, and sample
a candidate answer. For each object, we construct 500 "cor-
rect" samples and 500 "incorrect" samples. Then we split the
generated samples into 16000 training samples and 4000 test
samples. We guarantee that the combination of multipliers,
object, and answer is unique for all the samples in the dataset.
General Number Comparison. Inspired by the number com-
parison task proposed in oLMpics [Talmor et al., 2020], we
augment it as general number comparison to evaluate whether
the model can judge the quantitative comparison in the natural
language context. A template for this problem is "A [NUMA]
year old person is younger than a [NUMB] year old person",
where "[NUMA]" and "[NUMB]" can be replaced with num-
bers in a range [15, 104]. The label is determined based on
whether two numbers satisfy the semantics of the sentence.
We have crafted 20 templates, which cover a large range of
numbers and typical object numerical attributes (e.g., length
and weight) comparison, and then according to each template,
we generate 1000 positive samples and 1000 negative samples.
In each sample, the number is randomly sampled using a loga-
rithmic sampler to fill in the template. The dataset can be split
into 32000 training samples and 8000 test samples.
Math Word Problem Addition and Subtraction. The MW-
PAS task assesses whether the model can handle the addition
and subtraction task in the math word problem. Twenty tem-
plates are crafted from AI2 dataset [Hosseini et al., 2014].
They cover the ability of addition and subtraction. For ex-
ample, one template is "Joan found [NUMA] seashells on
the beach. She gave Sam some of her seashells. She has
[NUMB] seashells. How many seashells did she give to Sam?".
Similarly, the "[NUMA]" and "[NUMB]" can be replaced by
random integers. If the answer equals the subtraction from
Number A to Number B, then the label is "true". Otherwise, it



Model MME GNC MWPAS
MAJ 50.48±0.00 50.93±0.00 50.93±0.00

Train from scratch
GPT 78.99±1.81 95.16±0.28 49.85±0.63
GPT with DICE 73.68±0.43 75.09±1.21 49.17±1.04
NumGPT 97.16±0.55 95.45±0.57 88.05±0.99

Pre-train and finetune
GPT 72.02±3.63 93.84±1.29 49.17±0.82
NumGPT 98.11±0.38 95.82±0.17 86.16±3.26

Table 1: Experiment results for synthetic tasks. The performance of
NumGPT is better than baseline models in the three synthetic tasks
(p < 0.05). The pre-training improves the performance of NumGPT
on MME task (p < 0.05).

is "false". For each template, 1000 positive samples and 1000
negative samples are created. In each sample, numbers are
randomly sampled using a logarithmic sampler to fill in the
template. The splitting strategy is the same as the GNC task.
Model Details. In this study, we investigate the model perfor-
mance on synthetic tasks. Baseline models include majority
baseline (MAJ), GPT, and GPT with DICE. The MAJ baseline
simply selects the most frequent label in the test dataset as the
output. GPT is a Transformer decoder with 12 layers, 12 heads,
and the hidden size of 768. NumGPT has the same architec-
ture as GPT. The numeral embedding dimension of NumGPT
is 64 and σ is 0.5. For GPT with DICE, we replace the nu-
meral embedding in NumGPT with DICE [Sundararaman et
al., 2020]. We train the models from scratch for 50 epochs on
one Nvidia V100 GPU with batch size of 96. The optimizer
we used is AdamW and the learning rate is 6.25× 10−5.
Results. The results of experiments on synthetic tasks are
listed in Table 1. The mean and standard derivation of accu-
racy over 5 runs are reported. We also performed the Student’s
t-test to determine whether the average performance scores of
two groups are significantly different. We assume that if the
p-value is less than 0.05, the difference is statistically signifi-
cant. NumGPT outperforms all the baseline methods in MME
and MWPAS tasks (p < 0.05) and achieves the comparable
results of GPT in GNC task. Those tasks focus on evaluat-
ing different aspects of the numeracy ability. For the MME
task, we find that NumGPT can achieve a significant improve-
ment compared to GPT and GPT with DICE (p < 0.05). It
demonstrates that our numeral embedding captures the scale
information more accurately, since it models the exponent in-
dividually. It further facilitates measurement estimation with
multiplication, while GPT and GPT with DICE do not perform
very well on it. For the GNC task, NumGPT has a slightly
better performance than GPT. However, GPT with DICE can-
not achieve a good performance on this task. One possible
reason is that when integrating the DICE embedding into the
model, the model cannot capture the tiny difference in the
embedding if the numbers are very close. Therefore, it is hard
for the model to distinguish similar numbers, which leads to a
lower performance. For the MWPAS task, GPT and GPT with
DICE have a similar performance as the MAJ baseline model.
It demonstrates that they cannot model the addition and sub-
traction in the math word problems. NumGPT significantly

Model Micro-F1 ↑ Macro-F1 ↑
LR 62.49 30.81
CNN 69.27 35.96
GRU 70.92 38.43
BiGRU 71.49 39.94
CRNN 69.50 36.15
CNN-capsule 63.11 29.41
GRU-capsule 70.73 33.57
BiGRU-capsule 71.49 34.18
BiLSTM with DICE 75.56 46.80
Train from scratch
GPT 79.45±0.45 53.86±0.84
NumGPT 78.97±0.24 53.30±1.12

Pre-train and finetune
GPT 79.42±0.15 53.79±0.68
NumGPT 81.32±0.21 56.47±0.77

Table 2: Experiment results on Numeracy-600K dataset. NumGPT
outperforms other baseline models (p < 0.05).

outperforms other baseline models in this task (p < 0.05). It
reflects that NumGPT has a more accurate arithmetic ability
than other baseline models. A reason is that the numeral em-
bedding of NumGPT eases the difficulty of modeling addition
and subtraction.

3.2 Magnitude Classification

Magnitude classification on Numeracy-600K dataset [Chen et
al., 2019] is a task requiring models to predict the magnitude
of the masked numeral in the news titles. We conduct the
experiments on this dataset and compare the performance of
our proposed model with that of the baselines.
Model Details. GPT is a Transformer decoder with 12 layers,
12 heads, and the hidden size of 768. NumGPT has the same
hyperparameter configuration as GPT. We include the results
of GPT and NumGPT. They are trained from scratch on one
Nvidia V100 GPU with a batch size of 96 for 5 epochs. The
optimizer used in this experiment is AdamW and the learning
rate is set as 6.25× 10−5.
Results. Table 2 shows the experiment results on magni-
tude classification. Average values and standard deviations of
Micro-F1 and Macro-F1 over 5 runs for GPT and NumGPT
are reported respectively. Compared to the baseline results
provided by Sundararaman et al. [2020], we can observe that
our approach outperforms all the baseline models. Also, our
model achieves a comparable performance with GPT. It indi-
cates that NumGPT has a similar numeracy ability for mag-
nitude prediction with GPT when training from scratch. A
possible reason is that many numerals are masked in the in-
put and NumGPT cannot show its representation power of
numerical embeddings by only learning from the task dataset.
While after pre-training the NumGPT on a large unlabeled
corpus, it can achieve better performance than GPT on this
task (p < 0.05). It demonstrates that through fully learning
numeral relations in pre-training dataset, the performance of
NumGPT can be improved on the downstream tasks.



3.3 Ablation Study
We want to identify whether the hyperparameters σ used in
the mantissa embedding will affect the model performance.
Also, we would like to investigate whether the pre-training will
have an impact on the model performance. We conduct both
an ablation study regarding σ on the MME task and another
ablation study regarding pre-training on the synthetic tasks,
and magnitude classification.
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Figure 3: Experiment results for the ablation study on σ. The perfor-
mance of NumGPT on the MME task will maintain in a small range
except when σ is very small, such as 0.1, or σ is very large, such as
100.

Ablation on σ. We train NumGPT with σ varying from 0.1 to
100. Other training settings are the same as the previous ex-
periments on MME tasks. As shown in Fig. 3, we can observe
that as the σ increases, the performance is increasing and then
decreasing after σ is larger than 10. It seems that a very small
σ value, such as 0.1, or a very large σ value, such as 100, will
have a significant bad effect on the model performance. The
reason is that when the value of σ is very small, the numeral
embedding will become sparse and then provide not enough
detailed information to depict the numerals. When the value
of σ is very large, the numeral embedding will become very
smooth and will not be able to distinguish between two man-
tissas. Therefore, we should choose a suitable σ to help the
model understand the mantissa of the numeral.
Ablation on Pre-training. For the pre-training, we pre-train
GPT and NumGPT on the Wikipedia dataset, which contains
2,500M words, for one epoch on 8 Nvidia V100 GPUs with
batch size 80. For the fine-tuning stage, we train the same
epochs as training from scratch on the corresponding training
dataset on one Nvidia V100 GPU with batch size 96. The
experiment results are shown in Table 1 and Table 2. We
repeatedly run the finetuning given the pre-trained weight in
5 runs and report the average and standard deviations of per-
formance scores. The pre-trained NumGPT will improve the
performance on MME task, and magnitude classification task
(p < 0.05). After pre-training the models, in the magnitude
classification task, NumGPT achieves more significant im-
provements than GPT (p < 0.05). It indicates that NumGPT
can achieve better numeracy ability through pre-training on
the large unlabeled corpus. While in GNC task and MW-
PAS task, the performance improvements through pretraining
on NumGPT are not significant. One possible reason is that
the Wikipedia dataset does not have many samples requiring
the arithmetic ability, such as numerical addition and sub-
traction required in the downstream tasks. We also find that

pre-training cannot improve performance of GPT in synthetic
tasks and magnitude classification. It reflects that it is hard for
GPT to learn numeracy skills through pre-training in a large
unlabeled corpus.

4 Related Work
We summarize related work into two categories: probing nu-
meracy in NLP models and methods for improving numeracy
ability of NLP models.
Probing Numeracy in NLP Models. Numeracy ability is
mainly about reasoning with numbers in the text. The tasks
for probing numeracy ability in NLP models can be further
classified into two classes, approximate and exact, depending
on the encoding of the numbers in text [Thawani et al., 2021].
For example, "50" in the sentence "An egg weighs 50 grams."
is an approximation of an egg weight, while the number "7"
in the sentence "3 balls + 4 balls = 7 balls." is an exact answer.
The probing tasks on numeracy for approximate numbers con-
sist of numeration [Naik et al., 2019; Wallace et al., 2019],
magnitude classification [Chen et al., 2019], and measurement
estimation [Zhang et al., 2020]. The probing tasks on numer-
acy for exact numbers include number comparison [Talmor et
al., 2020] and math word problems [Ravichander et al., 2019].
In this paper, similar to the previous tasks, we synthesize the
measurement estimation task, the number comparison task,
and math word problems. Besides, we adopt magnitude classi-
fication tasks [Chen et al., 2019] to comprehensively evaluate
the numeracy ability of models.
Methods for Improving Numeracy Ability of NLP Mod-
els. Researchers have explored some methods to improve the
numeracy ability of NLP models. A line of work focuses on
developing a domain-specific problem solver integrated with
neural networks and symbolic functions for math word prob-
lems [Zhang et al., 2019]. Their methods are mainly based on
expression tree [Roy and Roth, 2015], sequence to sequence
model [Wang et al., 2017], reinforcement learning [Huang
et al., 2018; Wang et al., 2018], and hybrid model [Amini
et al., 2019; Chiang and Chen, 2019; Griffith and Kalita,
2019]. Another line of work focuses on improving numeracy
in word embeddings or pre-trained models [Jiang et al., 2019;
Sundararaman et al., 2020; Berg-Kirkpatrick and Spokoyny,
2020], which can be generalized well across different tasks.
Specifically, Jiang et al. [2019] proposed learning a weighted
prototype numeral embedding and demonstrated that it can per-
form well on numeral prediction and sequence labeling tasks.
However, the training process of the numeral embedding is
not integrated into the training process of the models, which
leads to suboptimal and time-consuming. Sundararaman et al.
[2020] designed a deterministic corpus-independent numeral
embedding with excellent performance on probing tasks for
numeracy [Naik et al., 2019; Wallace et al., 2019]. However,
when range of numbers becomes large, the embeddings for
similar numbers will be very close and hard to distinguish.
Moreover, in some tasks like math word problems, a sub-
tle change in the number leads to totally different answers.
While Berg-Kirkpatrick and Spokoyny [2020] conducted an
empirical analysis of different loss functions in the task of con-
textualized numeral predictions in BERT, our work explores



how GPT can benefit from numeral-aware loss function, sim-
ilar to their designed loss function. Particularly, we propose
a deterministic numeral embedding and further integrate it in
the pre-trained model GPT. Such a deterministic embedding
considering the scientific notation of the numbers is more ro-
bust than the numeral embedding proposed by Sundararaman
et al. [2020] for it is more scalable to produce embeddings for
large numbers.

5 Conclusion
To improve the numeracy ability of GPT, we have proposed
NumGPT, which incorporates the numeral embedding into
the input embedding. For the numeral embedding, we used
scientific notation to decompose the number into mantissa and
exponent and embed them into separate parts. Moreover, we
designed a numeral-aware loss to handle the generation of
numeral. We have conducted the experiments to demonstrate
the effectiveness of our method in the synthetic tasks and
magnitude classification. We also conduct a series of ablation
studies to test whether the hyperparameters and pre-training
have a large impact on model performance. From the experi-
ment results, the performance improvement encourages us that
integrating numeral embedding into the GPT is a promising
direction to improve the numeracy ability of language models.

In the future, we plan to extend our methods to a larger
size model and conduct quantitative experiments on more nu-
merical reasoning tasks. Also, the explanation of numerical
capabilities of large-scale language models are still less ex-
plored. It will be interesting and valuable to further conduct
research in future work.
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