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Abstract—Graph Neural Networks (GNNs) aim to extend deep learning techniques to graph data and have achieved significant
progress in graph analysis tasks (e.g., node classification) in recent years. However, similar to other deep neural networks like
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), GNNs behave like a black box with their details
hidden from model developers and users. It is therefore difficult to diagnose possible errors of GNNs. Despite many visual analytics
studies being done on CNNs and RNNs, little research has addressed the challenges for GNNs. This paper fills the research gap with
an interactive visual analysis tool, GNNLens, to assist model developers and users in understanding and analyzing GNNs. Specifically,
Parallel Sets View and Projection View enable users to quickly identify and validate error patterns in the set of wrong predictions;
Graph View and Feature Matrix View offer a detailed analysis of individual nodes to assist users in forming hypotheses about the error
patterns. Since GNNs jointly model the graph structure and the node features, we reveal the relative influences of the two types of
information by comparing the predictions of three models: GNN, Multi-Layer Perceptron (MLP), and GNN Without Using Features
(GNNWUF). Two case studies and interviews with domain experts demonstrate the effectiveness of GNNLens in facilitating the
understanding of GNN models and their errors.
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1 INTRODUCTION

G RAPHS are pervasive in various applications, such as
citation networks, social media, and biology. Analyz-

ing graph data helps us understand the hidden patterns
in graphs and benefits many graph-related tasks, including
node classification, link prediction, and graph classification.
For example, an effective analysis of a paper citation graph
can facilitate the prediction of a new paper [1], [2]. An explo-
ration of social networks can benefit the creation of an adap-
tive friend recommendation system in social media [3]. By
modeling molecules as graphs, where atoms and chemical
bonds are treated as nodes and edges respectively, we can
build machine learning techniques to predict the chemical
properties (e.g., solubility) of chemical compounds [4].

In recent years, graph analytics has embraced a new
breakthrough—Graph Neural Networks (GNNs). A fast
growing number of GNN models have been proposed to
solve graph-based tasks. For example, Graph Convolutional
Network (GCN) [1] adapts the convolutional operation from
natural images to graphs and conducts semi-supervised
learning to perform node classification on them. Graph
Attention Network (GAT) [5] further integrates the attention
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mechanism, which is widely used in Natural Language
Processing (NLP), into the GNN model architecture and dy-
namically assigns weights to different neighbors to enhance
the model performance. The advances of GNNs bring new
opportunities to the analysis of graph data and have become
increasingly popular in recent years. However, similar to
other deep neural networks, GNN models also suffer from
the difficulty of interpreting their working mechanisms.
When developing or using GNNs, developers and users of-
ten need to evaluate the model performance and explore the
causes of model errors and failures, which, unfortunately, is
often hard to achieve. Therefore, how to enable convenient
error diagnosis of GNN models has become a challenging
but significantly important task.

Visualization has been applied to helping model de-
velopers devise new deep learning techniques, and debug
and compare different types of deep neural networks [6].
For example, various visualization techniques have been
proposed to facilitate the development of a variety of deep
learning models, such as CNN [7], RNN [8], GAN [9], and
DQN [10]. These visualizations have achieved great success
in understanding and analyzing those deep learning mod-
els. However, it is very challenging to directly apply them
to GNNs, since most of those techniques are exclusively
designed for Euclidean data like images and text, while
GNNs mainly work on non-Euclidean data such as graphs.

Another challenge for the error diagnosis of GNNs
comes from the fact that GNNs often involve both the com-
plex topological structures and high dimensional features of
graphs, as well as the interplay between them. To effectively
analyze GNNs, it is crucial to properly link the topological
data, high dimensional features, and prediction results with
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Fig. 1. GNNLens is a visual analytics tool that helps model developers and users understand and diagnose GNNs. GNNLens consists of Control
Panel, Parallel Sets View, Projection View, Graph View, and Feature Matrix View. (a) The Control Panel enables users to interactively configure
the basic parameters (e.g., the dataset). (b) The Parallel Sets View displays the overall distribution of node properties. (c) The Projection View
further visualizes four groups of key metrics of nodes that have a direct influence on GNN model performances. Interactions such as lasso-selection
and linked highlighting are also supported to facilitate convenient exploration between the GNN prediction results on individual nodes and node
properties. (d) The Graph View provides users with the interactive exploration of the detailed topology structures around the node of user interest,
facilitating the analysis of the influence of topology structures on the GNN model performance. (e) The Feature Matrix View visualizes the feature
distribution of nodes.

a comprehensive workflow. Preliminary studies [11], [12],
[13] have proposed techniques to explain GNN model pre-
diction results. Most of them focus on instance analysis, i.e.,
explaining a prediction for single nodes. However, there still
lacks the ability and research at a higher level, i.e., analyzing
and understanding the common causes of the classification
errors of groups of nodes. Their methods make it difficult
to conveniently explore the general error patterns in the
prediction results of a GNN model, as well as further gain
insights for model improvement. In summary, it still re-
mains unclear how to develop new visualization techniques
to facilitate the effective error diagnosis of GNNs.

In this paper, we propose a novel error-pattern-driven
visual analytics system, GNNLens1, to provide model devel-
opers and users with deep insights into model performance
and its dependency on data characteristics. Instead of an-
alyzing the GNN prediction results of single instances, we
investigate the patterns in the prediction results shared by
a group of instances to obtain generalizable insights into
the model architecture. We worked closely with two GNN
experts for four months to derive the design requirements
of GNNLens. GNNLens comprises five views: Control Panel,
Parallel Sets View, Projection View, Graph View, and Feature
Matrix View, as shown in Fig. 1. The Parallel Sets View
enables users to see the distribution of node-level metrics
(Fig. 1(b)). The Projection View presents a set of 2D projec-
tions of the selected nodes according to metrics summarized

1. https://gnnlens.github.io/

from different perspectives, enabling users to extract poten-
tial clusters of nodes (Fig. 1(c)). Node glyphs are proposed
to help users conveniently learn about multiple metrics of
nodes and extract general error patterns in the Projection
View. The Graph View shows the node information and
topological structure of the whole graph. Users can also
zoom in and focus on the topological structure of a specific
node (Fig. 1(d)). The Feature Matrix View shows the detailed
features of selected individual nodes (Fig. 1(e)). All the five
views of GNNLens are linked together to help users analyze
GNN models simultaneously from multiple angles and fa-
cilitate the exploration of error patterns of the GNN models.
We conducted two case studies and expert interviews to
demonstrate the effectiveness and usability of GNNLens in
helping model developers understand and diagnose GNNs.

The contributions of our work are listed as follows:

• A visual analytics system to assist model developers
and users in understanding and diagnosing GNNs.

• Case studies on analyzing error patterns in GNN pre-
diction results and interviews with domain experts
to demonstrate the effectiveness and usability of the
proposed system.

The remainder of this paper is organized as follows.
Section 2 discusses the related work of this paper, includ-
ing GNNs, visual analytics in deep learning, and GNN
explainability. Section 3 provides a brief introduction to
the basic concepts of GNNs, such as typical architectures
GCN and GAT. By working closely with domain experts, we
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summarize the design requirements of understanding and
diagnosing GNN models in Section 4 and further introduce
the technical details of GNNLens in Section 5. We evaluate
our approach through case studies and expert interviews
in Section 6 and discuss the possible limitations and future
work of our approach in Section 7. Section 8 concludes the
paper with a brief summary of the proposed method.

2 RELATED WORK

The related work of this paper can be categorized into three
groups: graph neural networks, visual analytics in deep
learning, and graph neural networks explainability.

2.1 Graph Neural Networks
GNNs have been developed to analyze graph data by ex-
tending CNNs or RNNs to the graph domain [14] in the past
few years. These neural networks have gained promising
prediction results for analyzing graphs.

For the GNNs derived from CNN, they can be catego-
rized into spectral approaches and spatial approaches [14].
Spectral approaches define convolution on the spectral rep-
resentation of graphs [1], [15], [16]. The work done by Bruna
et al. [15] is the first attempt to generalize the convolution
concept from natural images to the graph domain. Deffer-
rard et al. [16] approximated the spectral convolution as
Chebyshev polynomials of the diagonal matrix of eigenval-
ues, resulting in further low computational cost. Kipf and
Welling [1] further simplified the Chebyshev polynomials
by using the first order of polynomials and renormalization
tricks, known as GCNs, which have inspired many follow-
up studies. Spatial approaches directly define convolution
on spatially close neighbors [2], [17], [18], [19], [20], [21],
[22]. Hamilton et al. [2] proposed GraphSAGE, which uses
sampling methods and aggregators defined over the neigh-
borhood to reduce dependence on processing whole graphs.
Their approach greatly accelerates the GNN used in large
scale graphs. Another direction is to extend RNN to the
graph domain. Prior studies have attempted to utilize the
gate function in GNNs to improve its ability to propagate
information across graph structure [23], [24], [25], [26], [27].

Researchers have also made significant progress in an-
alyzing GNN models. For example, Li et al. [28] showed
that the graph convolution of a GCN is merely a Lapla-
cian smoothing operation but when the number of layers
increases, the risk of over smoothing will be increased. Also,
they showed that when few training labels are given to
train GCN models, co-training methods and self-training
methods will improve the performance of GCN models.
Xu et al. [29] provided a theoretical framework to analyze
expressive power for GNNs and proved that their proposed
model is as expressive as the Weisfeiler Lehman graph
isomorphism test. Different from these studies, this study is
aimed at extracting general error patterns of GNN models
and further helps model developers understand and diag-
nose the models.

2.2 Visual Analytics in Deep Learning
Nowadays, there is a growing trend to use visualizations
to understand, compare, and diagnose deep neural net-
works [6]. Prior studies on using visual analytics to enhance

the interpretability of deep neural networks can generally
be categorized into two types: model-agnostic visualizations
and model-specific visualizations. For model-agnostic vi-
sualizations, prior studies mainly focus on visualizing the
model input and output to provide insights into the corre-
lation between them [30], [31] or using surrogate models to
explain the deep neural networks [32], [33]. However, these
model-agnostic visualizations avoid showing the hidden
states of the deep neural networks and fail to reveal the
inner working mechanism of different models.

To support a dive into the deep learning models, re-
searchers have also proposed a series of model-specific vi-
sualizations for explaining deep learning models. Previous
model-specific visualizations have covered a wide range of
deep learning models, including CNN, RNN, and GAN.
A variety of visualization techniques and interactions have
been designed based on the data type, the model structures,
and the working mechanism of different deep learning
models. Since CNN and RNN are the most widely-used
deep learning models [34], [35], a majority of model-specific
visual analytics are proposed for both types of models. For
example, CNNs are usually modeled using the directed
acyclic graph visualization, and the output of each layer
is usually displayed using matrix-based visualizations [7],
[36], [37]. To open the black box of RNNs, clustering meth-
ods and correlation visualizations have been proposed to
uncover the dynamic hidden states and learned patterns in
RNNs [8], [38], [39]. Recently, visual analytics methods tai-
lored for generative models [9], [40], [41] and reinforcement
learning models [10] have also been proposed.

Despite much work having been done by using visu-
alization approaches to improve the explainability of deep
learning models, little research has been conducted to en-
hance the explainability of GNNs through visualizations. To
fill this research gap, this paper proposes a visualization tool
to assist in the understanding and diagnosis of GNNs.

2.3 Graph Neural Network Explainability

According to our survey, only a few studies have attempted
to explain GNN models. For instance, Baldassarre et al.
[11] explored the possibilities of adapting explanation tech-
niques from CNNs to GNNs. They empirically evaluate
three widely-used CNN explanation methods, i.e., Sensi-
tivity Analysis (SA), Guided Back Propagation (GBP), and
Layer-wise Relevance Propagation (LRP) when explaining
GNN decisions. They found that explanations produced
by SA or GBP tend to be inconsistent with the human
interpretation, while LRP produces more natural explana-
tion results. Meanwhile, Ying et al. [12] proposed GNNEx-
plainer, which uses a subgraph to explain the GNN model
prediction. Given a trained GNN model, they formulate
an optimization task to maximize the mutual information
between the trained model prediction and distribution of
possible graph structures. They regard the subgraph as the
explanation results. Li et al. [13] further extended GNNEx-
plainer which is designed for an undirected unweighted
graph to suit a directed weighted graph.

Previous studies have mainly focused on providing an
instance-based explanation of the prediction results of GNN
models. Different from them, our work mainly focuses on
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analyzing error patterns made by GNN models, including
group-level and instance-level errors.
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Fig. 2. Given an input graph (a), GNN predicts the label of the target
node (e.g., the blue node) by aggregating the information from neigh-
boring nodes (b).

3 BACKGROUND

GNNs are deep neural networks that directly operate on
graphs (i.e., networks). A graph can be represented as G =
(V,E), where V denotes the vertex set and E denotes the
edge set. X ∈ RN×d is the feature matrix of the graph,
where N denotes the number of nodes in the vertex set and
d is the dimension of each node feature. The labels of the
nodes in the graph are often denoted as Y . In this paper, we
do not consider the features in edges.

We adopt similar notations introduced in [42] to illus-
trate the concept of GNNs. GNNs can be generally ex-
pressed in a neighborhood aggregation or message passing
scheme [43], as shown in Fig. 2. A general message passing
function for GNN is shown as below:

x
(k)
i = C(k)

(
x
(k−1)
i ,Aj∈N (i)φ

(k)
(
x
(k−1)
i ,x

(k−1)
j

))
(1)

where x(k−1)i denotes node features of Node i in Layer
k− 1. N (i) denotes the neighborhood of Node i. A denotes
a differentiable permutation-invariant function, e.g., sum. C
and φ denote differentiable functions such as Multi-Layer
Perceptrons (MLPs).

GCNs and GATs are two popular GNNs. According to
the study by Kipf et al. [1], the message passing function of
GCN can be defined as follows:

x
(k)
i = σ
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j∈N (i)∪{i}
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deg(i)

√
deg(j)

(
Wx

(k−1)
j

) (2)

where the features of the neighbors of Node i are first
transformed by a weight matrix W. Then they are normal-
ized by their degree and finally summed up. Finally, a non-
linear activation function σ is applied to process it.

GAT is first proposed by Veličković et al. [5] and its
message passing function is defined as follows:

x
(k)
i = σ
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j∈N (i)∪{i}

αijWx
(k−1)
i

 (3)

where W and σ are similarly defined as above. Different
from GCN, GAT assigns different weights (attention coeffi-
cients) to each neighbor. The attention coefficients αi,j are
computed as:

αi,j =
exp

(
LeakyReLU

(
a> [Wxi‖Wxj ]

))∑
k∈N (i)∪{i} exp ( LeakyReLU (a> [Wxi‖Wxk]))

(4)
where a is a weight vector and LeakyReLU is an activation
function which is defined as LeakyReLU(x) = max(0, x) +
negative slope ∗min(0, x).

The GNN models are mainly applied to the tasks of node
classification and link prediction in individual graphs. In
this paper, we take node classification as an example to il-
lustrate how our approach can improve the interpretation of
GNN models and facilitate model diagnosis. Such kinds of
node classification tasks are often done in a semi-supervised
way. Given a set of labeled nodes (i.e., training nodes) in a
graph, a GNN model will be trained to predict the labels of
the rest of the nodes in the graph.

4 DESIGN REQUIREMENT ANALYSIS

We work closely with two GNN experts, who are also
co-authors of this work, to collect their feedback on the
GNN interpretation issues they are facing and their current
practices of understanding and diagnosing GNN models.
One expert (E1) is a senior researcher who specializes in
developing new kinds of GNNs. The other expert (E2) is a
deep learning developer with strong experience in applying
GNNs to modeling and analyzing the topology data from
different application domains such as online education and
visualization. Also, the development of GNNLens was con-
ducted in an iterated way. After we finished each version
of the system, we asked experts to use the pilot system,
comment on the limitations, and suggest possible improve-
ments. By combining the original requirements proposed
by the experts and their subsequent comments on the lim-
itations of the systems, we complied a list of major design
requirements proposed by the domain experts, which can
be summarized as follows:

R1: Provide an overview of GNN results. All experts
commented that an overview of the GNN performance
is crucial for the GNN analysis. To gain an overview of
the dataset and classification results, the system needs to
summarize various types of information, such as degree
distribution and ground truth label distribution. This infor-
mation, covering various aspects of a GNN model, needs to
be organized and presented in a clear manner. Meanwhile,
the correlation among this information should be presented
to help users develop initial hypotheses about any possible
error patterns in GNN results, i.e., a set of wrong predictions
that share similar characteristics.

R2: Identify error patterns. After developing initial
hypotheses about the error patterns, users need more de-
tailed information to verify them. Specifically, users need
to examine the characteristics shared by a set of wrong
predictions and verify whether error patterns formed by
these characteristics make sense in analyzing GNNs based
on their domain knowledge. During the interview, experts
agreed that they usually use several characteristics to group
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the wrong predictions and identify error patterns. For ex-
ample, one expert stated that “misclassified nodes usually have
a relatively large shortest path distance to the labeled nodes.”
Therefore, the system should support users in examining
these characteristics and identifying error patterns.

R3: Analyze the cause of error patterns. After identi-
fying error patterns, finding the causes of these errors is
important for users to understand, diagnose, and improve
the GNNs. More detailed information is needed to under-
stand the possible causes of error patterns. Specifically, users
need to inspect the graph structures and node features to
determine the causes of error patterns. According to the
feedback from expert interviews, there are two main sources
of wrong GNN predictions: noise in the training data and
inaccurate feature aggregation in GNNs. To predict the label
of a node, GNN aggregates the node’s own feature with the
features of the neighboring nodes at each layer. Noise in the
training data, e.g., the same nodes but different labels, can
confuse the GNN and lead to wrong predictions. Inaccurate
feature aggregation at any layer will also influence the GNN
prediction of the node.

5 GNNLENS

This section describes the details of the proposed approach,
GNNLens. We first provide a system overview. Next, de-
tailed information on proxy models and metrics is provided.
Finally, we introduce the detailed visualization design of
each view in GNNLens.

5.1 System Overview
GNNLens consists of three major modules: storage, data
processing, and visualization. The storage module stores
and manages graph data and models. The data processing
module implements the necessary procedures for analyzing
the graph and model predictions, especially for calculating
various kinds of metrics. The processed data is then passed
to the visualization module, which supports the interac-
tive visual analysis of the GNNs. The storage and data
processing modules are developed using Python and Deep
Graph Library (DGL) [44] and integrated into a back-end
web server that is built with Flask. The GNN models are
implemented with PyTorch. We implement the visualization
module as a front-end application using React, Typescript,
and D3.

5.2 Proxy Models Training and Metrics Definition
Inspired by the fact that GNN prediction results are in-
fluenced by both graph structure and node features [14],
we define two proxy models to analyze the influence of
the graph structure and node features on GNN prediction
results. Through expert interviews, experts are concerned
about whether the graph structure or node features have
a greater impact on GNN prediction, and then determine
which components will have more impact. Hence, similar
to the ablation study when evaluating GNN models [29],
we define two proxy models such as GNN Without Using
Features (GNNWUF) and Multi-Layer Perceptron (MLP).
The two models are chosen, since the two proxy models
have the same model architectures as the GNN but are

trained using different input data. GNNWUF is trained only
using the graph structure while MLP is trained only using
the node features. When training GNNWUF, we use one
hot encoding as the node feature for each node, meaning
GNNWUF considers only the graph structures. When GNN
considers only the features of the node itself, then it can
degenerate into an MLP model. Hence, MLP is chosen as
the other GNN proxy model that only considers the node
features and is used to evaluate the influence of node struc-
tures. We train both proxy models with the same settings as
the training of GNN.

To further help users understand the impact of the graph
structure and node features, we also provide a number
of metrics, including graph structure based metrics that
take into account the graph structure but ignore the node
features, and node feature based metrics that take the node
features into account but ignore the graph structure. Those
metrics are derived from expert interviews. Details are pre-
sented in the following paragraphs.

A

Label 1 Label 2 testing training

A

A

Label  Consistency

（CGTNGT)

CGTNGT 𝐴 = 0

Nearest Training Nodes 

Label Distribution (SPD)

SPD(𝐴)𝒍𝒂𝒃𝒆𝒍 𝟏 = = 0.75

SPD(𝐴)𝒍𝒂𝒃𝒆𝒍 𝟐 = = 0.25

a b Label Distribution of Top-k 

Similar Training Nodes (KFS)
c

Top-k similar training nodes

node feature distance

CGTNGT 𝐴 = = 0.75

KFS(𝐴)𝒍𝒂𝒃𝒆𝒍 𝟏 = = 0.6

KFS(𝐴)𝒍𝒂𝒃𝒆𝒍 𝟐 = = 0.4

Fig. 3. Examples illustrating the computation of metrics, including Label
Consistency (a), Nearest Training Nodes Label Distribution (b), Label
Distribution of Top-k Similar Training Nodes (c).

5.2.1 Graph Structure based Metrics
• Node degree. GNNs mainly operate over the neighbor-

hood of each node and the number of neighbors can
affect the final performance of a GNN model [45].
Therefore, the node degree is considered in this study.

• Center-neighbor consistency rate. The center-neighbor con-
sistency rate depicts how consistent the labels of the cur-
rent node and its surrounding neighbors are [46]. It can
be divided into four major categories by considering
both the ground truth labels and their predictions: (1)
Label consistency shows the percentage of neighbors
that have the same ground truth label as the current node
(Fig. 3(a)); (2) Label-Prediction consistency describes
the percentage of neighbors whose GNN prediction labels
are the same as the current node’s ground truth label; (3)
Prediction-Label consistency delineates the percentage
of neighbors whose ground truth labels are the same as
the current node’s GNN prediction label; and (4) Prediction
consistency refers to the percentage of neighbors which
have the same GNN prediction label as the current node.
These values can indirectly reflect how many neighbors
satisfy the constraints. If the node degree is zero, then
the consistency rate is set to zero. These metrics help
users check whether the one-hop neighborhood exerts
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influence on the GNN prediction result on the node of
user interest.

• Shortest path distance to training nodes. We use the
breadth-first search (BFS) algorithm to calculate the
shortest path distance from the current node to the training
nodes. The algorithm will first start traversing the cur-
rent node and then the neighbors of the visited nodes.
When it first detects a node in the training set, the
algorithm will regard the distance from that node to the
current node as the shortest path distance from the current
node to the training nodes. The distribution of the training
nodes, also called labeled nodes, can have a significant
influence on GNN prediction [47].

• Nearest training nodes label distribution. To investigate
the influence of training nodes distribution on model
training, we calculate the nearest training nodes label
distribution. To calculate the label distribution of the nearest
training node(s), we first find the closest training nodes
to the current node in terms of shortest path distance.
Then we count the frequency of the labels of these
training nodes and normalize them into [0, 1]. The
normalized frequencies are considered to be the nearest
training nodes label distribution (Fig. 3(b)). Analyzing
these metrics helps to investigate the influence of train-
ing nodes distribution on model training [47].

• Nearest training nodes dominant label consistency. In order
to help users quickly capture the dominant information
of nearest training nodes label distribution and further di-
agnose the causes of errors in GNN prediction results, we
define the nearest label as the label that most frequently
occurs in the training nodes closest to a specific node in
terms of topological distance. Then, we further consider
whether the nearest label is consistent with the ground
truth label of this specific node. If yes, we set the nearest
training nodes dominant label consistency for this node
to True; otherwise, it is set to False. Sometimes, there
may be multiple nearest labels. Then we directly set the
nearest training nodes dominant label consistency to Not
Sure. Such a metric is derived from nearest training nodes
label distribution and the ground truth label of the current
node. If it is true, the current node can get information
from the structure and the training nodes and it has a
high chance of being correctly classified. Otherwise, it
has high probability to be misclassified [47].

5.2.2 Node Features based Metrics
• The label distribution of the top-k training nodes with the

most similar features. The feature similarity between two
nodes is defined as the cosine distance between the
feature vectors of two nodes [48]. We first find the
top-k training nodes with the most similar features to the
node of user interest. Then we count the frequency of
labels of those training nodes and normalize them into
[0, 1]. They are defined as the label distribution of the top-
k training nodes with the most similar features (Fig. 3(c)).
With this metric, we can analyze the influence of node
features on GNN predictions. We set the default value of
k to 5 in our current implementations.

• Top-k most similar training nodes dominant label consis-
tency. Similar to the definition of the previous metric,
we can also calculate the top-k most similar training nodes

dominant label consistency in the same way. The major
difference is that this metric reflects the influence of
training node features on the model prediction results
on the current node [48].

5.3 Visualization

As shown in Fig. 1, GNNLens visualization module consists
of a Control Panel (a), a Parallel Sets View (b), a Projection
View (c), a Graph View (d), and a Feature Matrix View
(e). The Control Panel allows users to choose a graph
dataset, select inspected models (Appendix A), and explore
different subsets of the dataset (e.g., all, training, validation,
and testing). It also allows users to choose the k value to
calculate node features based metrics. The Parallel Sets View
(Fig. 1(b)) visualizes the distribution of node-level metrics,
which are defined in Section 5.2. Users can select a subset
of metrics to inspect their distribution and correlation. Then
users can select a subgroup of nodes and check them in
the Projection View (Fig. 1(c)). The Projection View presents
a set of 2D projections of the selected nodes according to
metrics summarized from different perspectives. Users can
lasso-select a cluster of nodes in one plane to see their
locations on the whole graph in the Graph View (Fig. 1(d))
and their feature distributions in the Feature Matrix View
(Fig. 1(e)).

5.3.1 Parallel Sets View
In order to provide a high-level summary (R1) and help
users understand the datasets and identify error patterns
of GNN models prediction (R2), we design the Parallel Sets
View to visualize node-level metrics using Parallel Sets [49].
Previous work [37], [50], [51], [52], [53] explored the se-
lection of a subset of sample properties to study machine
learning models. Inspired by previous research, we use this
strategy to investigate error patterns in GNN models. We
propose to use Parallel Sets to investigate error patterns in
GNN prediction results, following the previous work [54],
[55]. Users can select what metrics are to be displayed in
the Parallel Sets through Parallel Sets Settings Modal. In
general, displaying fewer than five axes in Parallel Sets is a
good practice to reduce visual clutter and make efficient use
of functions in Parallel Sets. Due to the constraint that the
Parallel Sets are used to display the categorical variables,
we need to convert the continuous metrics to categorical
variables by grouping a range of values into one category.
Then we can also show them in the Parallel Sets View.

As shown in Fig. 1(b), each axis of the Parallel Sets shows
a categorical variable. The axis is partitioned into multiple
segments representing different categories of the variable.
The width of each segment represents the number of nodes
falling into that category. We can directly see the distribution
of the categories on the axis. Between two consecutive
axes, multiple ribbons are shown to connect the two axes,
each simultaneously representing the nodes that satisfy the
conditions specified by the two axes.

Users can easily select a subset of nodes in the dataset
and further investigate their node metrics and the GNN
model prediction results. When users click on a segment, the
corresponding category of that axis will be selected. Also,
when users click on the ribbon in the Parallel Sets, the
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corresponding set of nodes will be selected. Besides, the axes
in the Parallel Sets can be easily reordered by users through
drag-and-drop. By filtering the nodes according to node-
level metrics such as correctness and label, users can easily
select a node subset of their interest for further analysis.

A common alternative for visualizing multivariate data
is the Parallel Coordinates Plot (PCP) [56]. Each data point
is visualized as a single line across different attributes.
However, when it comes to categorical data, it is challenging
to identify the proportions of data that fall into specific
categories. Compared with PCP, Parallel Sets intuitively
show the distribution of the categories in each axis and the
correlation between multiple axes. Thus, Parallel Sets are
chosen to display the overall distribution of node attributes.

5.3.2 Projection View
With the overview of the dataset and GNN models provided
by the Parallel Set View, we further design the Projection
View to give users more insights into the subset of nodes
selected in the Parallel Sets View (R2, R3). We group a
subset of node-level metrics, display them in glyphs, and
further project them to the 2D plane. The Projection View
allows users to investigate the similarity of nodes regarding
different perspectives. It can be helpful for investigating
whether the nodes with similar node metrics share similar
error patterns.

In the Projection View, we provide a set of linked projec-
tion planes of the nodes that use different features. Differ-
ent from similar designs in EmbeddingVis [57], we design
different node glyphs to display different combinations of
node-level metrics. To project those node glyphs in 2D
plane, users can choose to use the t-SNE [58] or UMAP [59]
projection as the basic layout algorithm. Moreover, the force-
directed collision-avoidance method is integrated into the
basic layout algorithm to prevent the overlapping of node
glyphs. When users lasso-select a set of nodes in a projection
plane, the links between the same nodes in different planes
will be shown to help users identify the nodes and other
aspects of those nodes’ properties, as shown in Fig. 4. After
users hover on the node glyphs, the legend and detailed
information of those node glyphs will be displayed. How-
ever, due to the limited screen space, it cannot display
hundreds let alone thousands of node glyphs. Therefore,
we apply a hierarchical clustering algorithm with complete
linkage to cluster these nodes based on the corresponding
distance function [60]. Two clusters will be merged into
one cluster when the distance of two clusters is less than
or equal to a threshold, which is empirically set to 0.5. In
terms of categorical metrics such as ground truth label and
prediction results, the majority of a categorical metric in one
cluster is regarded as the aggregate result of that metric.
For continuous metrics such as center-neighbor consistency
rate and degree, we take their average as the aggregated
results. Cluster-level node glyphs are designed based on the
aggregate results of the node-level metrics for individual
nodes in the clusters. In order to help users further inspect
individual nodes, after users select a subset of cluster-level
node glyphs, users can switch to ”Detail” mode, then the
Projection View will display individual node glyphs for
nodes in such a cluster. This design greatly enhances the
scalability of the Projection View.

In our implementation, we categorize the metrics into
four groups and provide four projections for each group
of node metrics. The four projection planes are prediction
results comparison, surrounding nodes label consistency, training
nodes structure influence, and training nodes feature influence,
respectively. Different glyph designs are also proposed for
the nodes. We will introduce them one by one in the follow-
ing paragraphs.

A. Prediction results comparison. This plane aims to
help users compare different models prediction results and
reveal the relative influence of graph structures and features
for each node or cluster. The metrics used in this plane
include the ground truth label GT , the prediction label of three
models, i.e., GNN, GNNWUF, MLP P = [P1, P2, P3], and the
Confidence of GNN predictionCONF . As shown in Fig. 4(b),
three model prediction results can be found in the pie chart.
The inner circle encodes the ground truth label. The outer
circular ring encodes the confidence. The radius of the whole
node glyph encodes the size of the clusters. Through such a
node glyph, users can easily compare the ground truth label
and model prediction results and understand how confidently
GNN models make predictions. For example, if the glyph
shows consistent color across the inner circle and the three
sectors of the pie chart, it means that the model can use
either the node features or the graph structure information
to correctly predict the node labels. Through the projection,
the nodes with similar metrics will be in close proximity.
Users can see if there are clusters of nodes with the same
ground truth labels and predictions, which helps GNN model
developers and users further analyze what causes the model
to make such predictions. For projection and clustering, the
distance between Node a and Node b in this plane is defined
as below:

D2
1(a, b) = I{GTa 6= GTb}+

3∑
j=1

I{Paj 6= Pbj}

+(CONFa − CONFb)
2

(5)

where I{∗} is an indicator function, which will be 1 if the
expression is true and 0 otherwise. Such a distance function
guarantees that the value of each term is between 0 and 1.

B. Surrounding nodes label consistency. To help
users explore the label consistency between a node and
its neighboring nodes, we show the ground truth label
GT , the degree DEG, the center-neighbor consistent rate
CN = [CGTNGT , CGTNPT , CPTNGT , CPTNPT ] ∈ [0, 1]4

in this plane, where CGTNGT represents Label consistency,
CGTNPT represents Label - Prediction consistency, CPTNGT

represents Prediction - Label consistency, and CPTNPT repre-
sents Prediction consistency. The node glyph (Fig. 4(c)) is de-
signed to show this group of metrics. The design is inherent
from the Radar Chart as it can display continuous variables.
The color of polygon encodes the ground truth label. When
the five axes of the Radar Chart reach a large value, it means
that the center node has many surrounding nodes, and the
ground truth labels and GNN predictions results of that node
are very consistent with the surrounding nodes. It suggests
that the GNN model can effectively use the information
of surrounding nodes for correct classification. The radius
of the whole node glyph encodes the size of the clusters.
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Fig. 4. Projection View enables users to analyze the node-level metrics of the subset of nodes from different perspectives: (a) The links connecting
different kinds of information of the same nodes shown in different planes will be displayed when users lasso a group of nodes in one plane; (b-e)
Node glyphs design in planes of the Projection View; (f) Color indicates the corresponding label.

Clusters may appear and users can easily spot them, since
there will be a certain shape among those node glyphs. For
the projection and clustering, the distance between Node a
and Node b is defined as:

D2
2(a, b) = (Norm(DEGa)−Norm(DEGb))

2

+I{GTa 6= GTb}+
4∑

i=1

(CNai − CNbi)
2,

(6)

where Norm(d) ∈ [0, 1] is the normalized degree.

C. Training nodes structure influence. To help users
capture the structure influence of training nodes on GNN
model prediction, the metrics visualized in this plane include
GNN prediction label P1, shortest path distance to training nodes
DIS, and normalized nearest training nodes label distribution
SPD ∈ [0, 1]C . Here C is the number of classes. In order
to encode the DIS in the node glyph and highlight the
difference between smaller values, i.e., DIS ∈ [0, 5), we
define Closeness = max(0, 1 − DIS ∗ 0.2). It depicts the
closeness of the nearest training nodes to the current node. The
node glyph (Fig. 4(d)) is designed to show this group of
metrics. The length of the line on the top of the rectangle
encodes the closeness. The rectangle on the right-hand side
of the glyph shows the distribution of ground truth labels
of training nodes with the shortest path distance to that node.
The width and height of the whole node glyph encode the
size of the clusters. The left-hand side rectangle encodes the
GNN prediction label. This helps users analyze the correlation
between those variables. When the color of the left-hand
side rectangle is consistent with that of the right-hand side
rectangle, it means that there is a high correlation between
P1 and the dominant component of SPD, indicating that
the closest training nodes have a strong influence on GNN’s
prediction result of the current node. For the projection and
clustering, the distance between Node a and Node b is
defined as:

D2
3(a, b) = I{Pa1 6= Pb1}++

C∑
i=1

(SPDai − SPDbi)
2

+(Closenessa − Closenessb)2.
(7)

D. Training nodes feature influence. We further use
another plane to help users capture the feature influence
of training nodes. The metrics we used in this plane include
GNN prediction label P1 and KFS ∈ [0, 1]C , the label distribu-
tion of the top-k training nodes with the most similar features. The
node glyph (Fig. 4(e)) shares a similar visual design with
Fig. 4(d). The difference is that the right-hand side rectangle
encoded the top-k feature similarity training nodes ground truth
label distribution and the node glyphs do not have a line at
the top. It enables users to analyze GNN prediction results
from the perspective of features. If users find that the color
of the GNN prediction result occupies a large portion of the
right-hand side rectangle, it indicates that the top-k feature
similarity training nodes have a strong influence on GNN’s
prediction of the current node. The clusters on the projection
plane indicate nodes that have been similarly affected by
the features. Combined with the Feature Matrix View, we
can determine which feature may play a better or worse role
in the GNN predictions. We use a similar distance function
defined in the plane of training nodes structure influence:

D2
4(a, b) = I{Pa1 6= Pb1}+

C∑
i=1

(KFSai −KFSbi)
2. (8)

Weights of terms in the above distance functions: For each
distance function above (i.e., Equations 5 to 8), we normalize
each term of the function to [0, 1]. Also, we assume each
term has equal importance in differentiating the difference
between nodes and empirically set the weight of each term
to 1.

Alternative designs: There are a few design alternatives for
those node glyphs. For the node glyph in the plane of predic-
tion results comparison, we can use a 2×2 grid to represent the
ground truth label and three model prediction results. However,
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such a design cannot effectively help users compare the
metrics in the diagonal and will confuse users. Therefore,
such a design is not adopted. For the node glyph in the
plane of surrounding nodes label consistency, an alternative
design is to use Parallel Coordinates Plot to display the five
continuous metrics. However, it is generally hard for users
to distinguish between two node glyphs. For the node glyph
in the plane of training nodes structure influence and feature
influence, we can use a similar node glyph in the plane of
prediction results comparison to encode the GNN prediction
result in the inner circle and encode the label distribution in
the outer ring. However, to avoid any confusion in the node
glyph between those planes, we do not use this design in
training nodes structure influence and feature influence plane.

Fig. 5. Graph View enables users to inspect the graph structure. Node
glyph in Graph View enables users to compare three model prediction
results and ground truth label simultaneously. The color legend indicates
which class the color represents. The legend for the node glyphs shows
the position at which each metric is encoded. The color in the legend for
node glyphs is only intended to show an example of node glyphs.

5.3.3 Graph View

We use the classic node-link diagram with the force-directed
collision-avoidance layout to visualize the graph dataset.
Users can get a sense of the distribution of the selected
nodes in the graph, and inspect the neighborhood of the
nodes (R2, R3).

To further facilitate the convenient exploration of the
reasons for errors, we design a node glyph to encode a
group of node-level metrics. The experts commented that
they are interested in the ground truth label, and the predic-
tions of the GNN, GNNWUF, and MLP models. Combining
the four metrics, they are able to investigate the potential
error types of the nodes. As shown in Fig. 5, the glyph
designed to present the node-level metrics is similar to the
design used in the Projection View. A legend for the glyph
is also displayed at the corner of the Graph View as an easy
reference for users.

The set of nodes selected in the Parallel Sets View or
the Projection View is highlighted in the Graph View. Users
can hover a node in the Graph View, which will be fur-
ther highlighted with the radius doubled. The Graph View
allows users to quickly check any interesting neighboring
nodes. Users can also switch to the “Subgraph” mode. It
will display the one-hop and two-hop neighbors of selected

nodes, enabling users to explore different hops of neigh-
borhood nodes. Users can visualize the specific subgraphs
on their own and can explore them by changing the “Sub-
graph” options. For example, generated subgraphs from
GNN explainability methods such as GNNExplainer [12]
can be loaded into the system for exploration. Please check
Appendix B for more details. An overview of the graph
is displayed in the bottom right-hand corner to support
users navigating the graph. Users can click the specific
position in the overview to navigate the displayed area of
the graph. Users can choose to filter out the unfocused nodes
to accelerate the rendering and reduce the visual clutter in
the graph. To investigate the node features and most similar
features of training nodes, users can click on the nodes of
interest in the Graph View and further explore the node-
level features in the Feature Matrix View.

Fig. 6. Feature Matrix View includes brushable bar chart (Top) and
feature matrix (Bottom).

5.3.4 Feature Matrix View
We design the Feature Matrix View to help users further
explore the node features (R3), as shown in Fig. 6. The
Feature Matrix View consists of two components, i.e., a
brushable bar chart and a feature matrix.

We first assume that all the features used in our dataset
range from zero to one. For categorical features, one-hot
encoding can be used to convert them to one-hot vectors,
where the value of each element of the vector will be either
0 and 1 [61]. Thus, it can satisfy our assumption as well.
The feature matrix indicates all the node features. The color
encodes the prediction label of that node and the opacity
encodes the specific feature value. In the brushable bar
chart, the bar height encodes the count of any features with
a value larger than 0 in the feature matrix. Users can brush a
range of bars in the brushable bar chart and thus the feature
matrix will display the specific range of feature dimensions.
This makes it really convenient for users to inspect the
features of nodes with a high dimensionality and without
this design, the scalability of this view is not guaranteed.
Users can change the sorting methods of feature dimen-
sions. It can be sorted based on node ordering or frequency
of features. When users select a subset of nodes in Parallel
Sets View and Projection View, it will display the features
of selected nodes. The hierarchical clustering algorithm and
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optimal leaf ordering [62] will be employed to generate the
node ordering. After sorting the nodes, the similarity will
be calculated between two consecutive nodes. If they are
very similar, we highlight them by adding a border in the
rectangle in the rows of corresponding nodes. When a node
is selected in the Graph View, it will display the features
of that node and the top-k most similar feature training nodes.
The training nodes will be sorted based on feature similarity
with that node. When sorting feature dimensions based on
the frequency of features, the following strategy is used. For
each dimension of the features, we first count the frequency
|N | and then calculate the frequency of support |SUPP |,
i.e., the number of nodes with the same features and model
prediction label as the first node. We then calculate the
support rate of the features SUPPRATE by using for-
mula: SUPPRATE = |SUPP |/|N |. Therefore, when the
support rate is high, it will have a higher ranking. When
the support rate between two dimensions of a feature is the
same, it is sorted based on the frequency of features. Then
we can figure out what features can be supportive of the
predictions for the GNN model.

6 EVALUATION

In this section, we demonstrate the effectiveness and us-
ability of GNNLens through two case studies and structured
interviews with GNN experts. We conduct two case studies
with two experts E1 and E2 who have been introduced in
Section 4.

(a) All (b) Training
a1 a2 b1 b2

Fig. 7. The correlation between GCN correctness and Label : (a) All
nodes in Amazon Photo dataset; (b) Training nodes in Amazon Photo
dataset.

6.1 Case One: Error Pattern Analysis of GCN on Ama-
zon Photo Dataset
This case study shows how our approach helps the model
researcher explore the error patterns of GCN, one of the
most representative GNN models, on the Amazon Photo
dataset [63]. The Amazon Photo dataset is a co-purchasing
network of 7,650 products. In this dataset, each node rep-
resents a product and is classified into one of the eight
classes, including File Photography, Digital Concepts, Binoc-
ulars & Scopes, Lenses, Tripods & Monopods, Video Surveil-
lance, Lighting & Studio, and Flashes. Each edge is a co-
purchasing relationship, i.e., products are purchased by the
same customer. Each feature of the node is a vector of 0-1
value indicating whether the corresponding word appears
in product reviews or not.

6.1.1 Developing Initial Hypotheses about the Possible Er-
ror Patterns in GNN Results
E1 started his analysis from the Parallel Sets View. E1 found
that the GCN model achieves an accuracy of 91.15% on

Fig. 8. The correlation among Label, GCN correctness, nearest training
nodes dominant label consistency, and shortest path distance to training
nodes: (a) Nodes with Label ”7” ; (b) Nodes with Label ”0”.

the whole dataset. The test accuracy is 91.80%. The model
performance is consistent with the results reported in other
papers [63]. E1 changed the first axis of the Parallel Sets
View to be GCN correctness by dragging the corresponding
axis to the first axis. The total number of wrong prediction
nodes is 677. Then, E1 explored the variables correlated with
the wrong prediction. E1 put the Label in the second axis and
found that the GCN model makes the most percentage of
wrong predictions on the nodes of Class 7. This is indicated
by the ribbon link flowing from the wrong category to the
ground truth label ”7”, which occupies the largest portion of
the ground truth label ”7” in Fig. 7(a2). E1 used the Control
Panel (Fig. 1(a)) to see the training node information by
ticking “Training”. E1 found that the training nodes are
sampled with even probability from eight classes, which
is shown by a similar distribution of ground truth labels in
training nodes and all the nodes (Fig. 7(b)). The number of
nodes with the ground truth label ”7” is smaller (Fig. 7(a2))
than the number of nodes of other labels, and the number
of training nodes with the ground truth label ”7” is also
small (Fig. 7(b2)). Perhaps this is the reason that GCN is
unable to correctly classify the nodes in Class 7. However,
E1 also found that the number of training nodes with the
ground truth label ”0” is also small (Fig. 7(b1)), but the
GCN model correctly classifies most of the nodes in Class
0 (Fig. 7(a1)). E1 doubted his hypothesis and decided to
further investigate the cause of wrong predictions (R1).

6.1.2 Forming the Hypothesis about Possible Error Pat-
terns

To analyze the error patterns found in Section 6.1.1 from
graph structure perspective, E1 selected four axes, including
Label, GCN correctness, nearest training nodes dominant label
consistency, and shortest path distance to training nodes, in the
Parallel Sets View, as E1 believed that the axis Label can
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help him select the specific label to check. The axis GCN
correctness can help him to filter the nodes with the correct
prediction or wrong prediction. The axes nearest training
nodes dominant label consistency and shortest path distance to
training nodes help him analyze the nodes from graph struc-
ture perspective. After hovering over Label ”0” (Fig. 8(a1))
and Label ”7” (Fig. 8(b1)), E1 found that for nearest training
nodes dominant label consistency, most nodes (355/369) with
Label ”0” have a true value (Fig. 8(a2)), while most nodes
(264/331) with Label ”7” have a false value (Fig. 8(b2)). This
shows that from graph structure perspective, it is easy for
nodes with Label ”0” to find training nodes with the same
ground truth label through searching the training nodes with
shortest path distance to current nodes, while nodes with
Label ”7” cannot satisfy these conditions. Moreover, E1 can
find that the shortest path distances to training nodes for most
nodes with Label ”0” (Fig. 8(a3)) and Label ”7” (Fig. 8(b3)) are
less than or equal to 2. It means that nearest training nodes
for most nodes with Label ”0” and Label ”7” are located in the
input scope of GCN with two layers and will have an impact
on the prediction results of GCN. Therefore, E1 speculated that
it can be the possible reason for more classification errors
when GCN is applied to the nodes of Label ”7” (R2).

6.1.3 Analyzing the Cause of Error Patterns
To further verify the cause of the error patterns identified
above, E1 selected 150 wrongly-classified nodes of Label
”7” by GCN in Parallel Sets View (Fig. 1(b1)) and further
explored other views. From the planes of training nodes
structure influence and feature influence in the Projection View
(Fig. 1(c)), few nodes of Label ”7” appear in the label dis-
tribution and many prediction labels are consistent with
the largest component on the right-hand side of the glyph.
It indicates that the structure and the features of training
nodes of Label ‘’7” do not have a significant influence on
the prediction results of testing nodes of Label ‘’7” when
compared with the influence of other training nodes. From
the plane of surrounding node label consistency, the label con-
sistency of most nodes is relatively small. It can be explained
that the labels of the neighbors of these nodes are mostly
inconsistent with the label of the current node. It means that
the information of neighboring nodes can confuse the GCN
prediction results of the current node.

E1 further explored three training nodes that are also
misclassified. E1 lasso-selected them (Fig. 1(c1)), and then
selected one of the nodes in the Graph View for further
checking (Fig. 1(d1)). E1 found that the ground truth labels
of the majority of its neighbors are different from its own
ground truth label, and its GCNWUF prediction result is consis-
tent with the GCN prediction result (Fig. 1(d1)). In the Feature
Matrix View (Fig. 1(e)), E1 observed that the frequency of
features is very high in the front of the bar chart (Fig. 1(e1)),
and the last features of the current node also share a lot of
common features with the top-k most similar training nodes
(Fig. 1(e2)). It indicates that the current node shares a lot of
common features with the top-k most similar training nodes.
Moreover, the ground truth labels of those nodes are different
from the ground truth label of the current node (Fig. 1(e3)).
Therefore, from the above observations, E1 speculated that
the classification error of the current node is probably due to
the existence of a large number of neighboring nodes whose

ground truth labels are totally different from the current node.
Also, the current node lacks discriminative features.

However, E1 also spotted that the MLP prediction re-
sult is consistent with the current node’s ground truth label
(Fig. 1(d1)). E1 quickly raised one question: Does the MLP
model memorize the features of training nodes of Label ”7” and
fail to generalize to other nodes with the same ground truth labels?
E1 checked the performance of MLP in the Parallel Sets
View and found that MLP correctly classifies all the training
nodes of Label ”7”, but incorrectly classifies all the test nodes
of Label ”7”. E1 thought that it is very hard for GCN models
to correctly classify the test nodes with a strong influence
of the structures and the features of nodes of other classes.
Thus, E1 believed that when training the GCN using cross-
entropy loss, he can increase the loss of the training nodes of
Label ”7” to improve the classification of the nodes of Label
”7”, decreasing the strong influence of nodes of other ground
truth labels [64] (R3).

6.2 Case Two: Error Pattern Analysis of GAT on Cora-
ML Dataset

The model developer, E2, often needs to use GNNs to model
network data in real applications. This case study shows
how GNNLens assists him in analyzing another represen-
tative GNN model (i.e., the GAT model) on the Cora-ML
dataset [65]. Specifically, the Cora-ML dataset is a citation
network of 2,810 scientific publications. Each node in the
Cora-ML dataset represents a paper and is classified into
one of seven classes, including Case-Based, Theory, Genetic
Algorithms, Probabilistic Methods, Neural Networks, Rule Learn-
ing, and Reinforcement Learning. Each edge is a citation
relationship. Each feature of the node is a vector, with each
feature element ranging from 0 to 1. A feature element
larger than 0 represents that the paper abstract contains the
corresponding word.

6.2.1 Forming the Hypothesis about Possible Error Pat-
terns
In the Parallel Sets View, E2 found that the GAT achieves
an accuracy of 86.16% on the whole dataset and 84.70% on
the testing set. To check whether there are error patterns
resulting from node features rather than graph structure, E2
selected three axes, including nearest training nodes dominant
label consistency, top-k most similar training nodes dominant
label consistency, and GAT correctness, as E2 believed that
the axis GAT correctness can help him to filter the nodes
with the correct prediction or wrong prediction. The axes
nearest training nodes dominant label consistency and top-k most
similar training nodes dominant label consistency can help him
determine whether the source of influence on prediction
results is the graph structure or the node features. E2
found an interesting set of nodes with the nearest training
nodes dominant label consistency as true, the top-k most similar
training nodes dominant label consistency as false, and the GAT
correctness as wrong. E2 decided to further explore them and
select those nodes in the Parallel Sets View by clicking the
ribbon satisfying the above conditions.

In the Projection View (Fig. 9(a)), E2 found that in
the training nodes feature influence plane, the left side and
the right side of the glyphs have mostly the same color
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a1

c1
b1

Fig. 9. E2 selected a cluster (a1) to inspect in Projection View (a). Then E2 selected a node in Graph View (b) to further inspect its neighborhood.
E2 found that in Feature Matrix View (c), the first few words are “markov”, “model”, “chain” (c1), which are common words in the paper belong to
Probabilistic Methods. E2 verified that this node is mislabeled and should be labeled as Probabilistic Methods.

(Fig. 9(a1)). This consistency means that the GAT prediction
labels are consistent with the top-k similar features training
nodes dominant labels. E2 speculated that the node features
have a great impact on GAT prediction. Then, E2 selected
one of the clusters, and further checked the other planes of
the Projection View. In the training nodes structure influence
plane, E2 saw that the left-hand side and the right-hand
side of the highlighted node glyphs are in different colors.
In the surrounding nodes label consistency plane, it showed
that the label consistency is generally large, indicating that
the surrounding ground truth label is consistent with the
current node’s ground truth label. In the prediction results
comparison plane, it was found that the prediction results
of MLP are consistent with the prediction results of GAT. It
further confirms that the node features of this cluster of
nodes have a great impact on the GAT predictions on them
(R1, R2).

6.2.2 Analyzing the Cause of Error Patterns

E2 also explored the Graph View and selected a node to
verify his observation. E2 found that the node has some
neighbor nodes with a different ground truth label, as shown
in Fig. 9(b). In the Feature Matrix View (Fig. 9(c)), E2 can
see that the ground truth labels of most training nodes are
the same as its GAT prediction label. The first few words are
“markov”, “model”, “chain” (Fig. 9(c1)), which are common
words in papers about Probabilistic Methods. This article has
these words, but the ground truth class of this article is
Neural Network. E2 thought this node is mislabeled rather
than misclassified. To verify whether it is labeled correctly,
E2 further checked its title by hovering over the glyph in the
Feature Matrix View and found that the title is “Equivalence
of Linear Boltzmann Chains and Hidden Markov Models” [66].
After further checking the content of this article, E2 con-
cluded that the ground truth class of this article should be
Probabilistic Methods rather than Neural Networks. E2 further
checked the three neighboring nodes of this node, which
shares the same properties that the ground truth class is
Neural Network but all three model prediction results are
Probabilistic Methods (Fig. 9(b1)). E2 found that they share
the same title “Gibbs-Markov Models” [67] and should belong
to the class “Probabilistic Methods”. E2 suggested that the
wrong labels should be identified and corrected, especially

when the articles have words “markov”, “model”, “chain”,
and its ground truth class is Neural Network (R3).

6.3 Expert Interviews

6.3.1 Participants
To further evaluate the usefulness and usability of GNNLens,
we also conducted interviews with 12 experts (E3-E14, age
22-46, µ = 26.33, σ = 6.09). All 12 experts have experience
in the application or design of GNN models. None of the 12
experts are co-authors of this paper.

6.3.2 Methodology
We first introduced GNNLens to experts and demonstrated
the case study with E1. After experts learned about how
GNNLens works, we asked them to explore GNNLens by
following the demonstrated workflow to find the cause
of the prediction errors of individual nodes and extract
general error patterns in GNN prediction results. Finally, we
asked them to finish a post-interview questionnaire with 5-
point Likert scale questions (1-Strongly Disagree, 5-Strongly
Agree) to collect their feedback on GNNLens. As shown in
Table 1, the questionnaire mainly comprises evaluations on
the effectiveness, visual design, and usability of GNNLens.
Results and feedback are summarized accordingly.

6.3.3 Results
Effectiveness: After exploring GNNLens, all the experts
appreciated our efforts in making such an effective system
to help them understand and diagnose the GNN models.
As shown in Table 1, experts agreed that GNNLens can
help users understand the overview of dataset and GNN
prediction results, identify the error patterns, and analyze
the causes of error patterns. E5 commented that ”the visual-
ization is clear and insightful, leading to the rapid discovery of the
underlying error patterns, and thereby enables future endeavors in
improving the GNNs.” It further supports that GNNLens can
help users diagnose the GNNs used in node classification
tasks.
Visual design: From the results on the evaluation of visual
design, we observe that most of the experts (8/12) agreed
that the overall visual designs of GNNLens are intuitive and
easy to understand. The experts agreed that the Graph View
is the most intuitive and easy to understand, as shown in
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Question Score
Effectiveness

Q1 The system can help me understand the
overview of dataset and GNN prediction re-
sults.

4.50 ± 0.65

Q2 The system can help me identify the error pat-
terns of GNNs.

4.25 ± 0.72

Q3 The system can help me analyze the causes of
error patterns of GNNs.

3.92 ± 0.76

Visual design
Q4 The Parallel Sets View is intuitive and easy to

understand.
4.08 ± 0.95

Q5 The Projection View is intuitive and easy to
understand.

3.83 ± 0.99

Q6 The Graph View is intuitive and easy to under-
stand.

4.50 ± 0.76

Q7 The Feature Matrix View is intuitive and easy to
understand.

4.00 ± 0.82

Q8 The overall system is intuitive and easy to un-
derstand.

3.83 ± 0.90

Usability
Q9 It is easy to learn and use the system. 3.67 ± 1.03

Q10 I would like to recommend this system to others
who are working on diagnosing GNNs.

4.42 ± 0.76

Q11 I think it is useful to use this system to diagnose
GNNs.

4.00 ± 0.82

Q12 I would use this system to diagnose errors of
GNNs in the future.

4.08 ± 0.76

TABLE 1
Evaluation on effectiveness (Q1-Q3), visual design (Q4-Q8), and
usability (Q9-Q12) of GNNLens. Scores (mean ± std) for each

question are reported.

Table 1. In terms of the Projection View, the experts think
that the glyphs can help users understand the metrics of
each node but the learning curve is a bit steep.
Usability: Most of the experts (7/12) agreed that GNNLens
is easy to use and easy to learn. As shown in Table 1,
the experts agreed that they would like to recommend the
system to others who are working on diagnosing GNNs.
They also agreed that it is useful to diagnose GNNs and
would like to use the system in the future. E7 further
positively commented that ”the response time of the system is
quite fast and the overall design is clear.” Such results support
that GNNLens will be widely used by users to understand
and diagnose GNNs.
Suggestions: Experts also gave helpful suggestions for im-
proving GNNLens to further support their analysis of GNN
models. For example, it would be more helpful if the system
can provide recommendations on how to further improve
GNNs if some error patterns of GNNs are found. Moreover,
if the system can support customized datasets like hetero-
geneous graphs, the generalizability of the system will be
further enhanced.

7 DISCUSSIONS AND FUTURE WORK

Generalizability: GNNLens can be applied to analyze vari-
ous kinds of GNN models and different datasets. However,
it can only be utilized to analyze the task of node classifica-
tion. It does not support the analysis of link prediction and
graph classification. Moreover, if the dataset has multiple
relations or the edges have features, the system cannot be
directly used to analyze those customized data. Also, users
may want to further customize some metrics to inspect

the relationship between them and the model performance.
However, the system does not support it currently.
Scalability: One limitation of GNNLens is its scalability and
we have attempted to mitigate this issue by different means.
For example, the Projection View displays the individual
node glyphs for each node. Due to the limited screen space,
we cannot display up to 300 nodes. We improved the Pro-
jection View by using a hierarchical clustering algorithm to
make it scale up to more nodes, as described in Section 5.3.2.
The node glyphs are used to represent clusters and details
can be checked on demand. This significantly improves the
scalability of the Projection View. For the Graph View, in
order to accelerate the rendering speed, we enable users to
display only the focused nodes and their neighbors, without
rendering other nodes. Some scalability issues cannot be
easily resolved. For example, in the Projection View, if the
number of labels is increasing, the number of different colors
to encode different labels will also be increased. However,
too many colors will increase the cognitive load for users.
Moreover, as the number of selected data points is increas-
ing, the number of links will also increase, which can result
in visual clutters.
Learning curve of the Projection View: Compared with
other views of GNNLens, it took more time for the domain
experts to understand the glyphs and metrics used in the
projection view. To further help experts understand the
meaning of glyphs, glyph legends have been added to the
Projection View for an easy reference. The Projection View
plays an important role in helping users understand the
properties of the selected nodes and narrow down to one
or several nodes for further analysis in the Graph View
and Feature Matrix View. Without this design, it is hard to
explore the properties among those selected nodes.
Future work: In the future, we plan to generalize GNNLens
to other graph-related tasks, like link prediction and graph
classification. We plan to make Parallel Sets View and Pro-
jection View more configurable, such as enabling users to
define their own metrics, such as clustering coefficients to
show. We also want to further improve the running perfor-
mance of GNNLens and support the graph dataset with more
nodes and higher dimensional features. Moreover, We want
to generalize GNNLens to support the dynamic insertion of
nodes and edges to see the corresponding change in GNN
prediction results. It will help users understand how the
graph structure benefits the model to improve performance.

8 CONCLUSION

In this paper, we present GNNLens, a visual analytics system
to help model developers and users understand and diag-
nose GNN model prediction results. GNNLens comprises
four visualization components: the Parallel Sets View en-
ables users to see the distribution of metrics; the Projection
View presents a set of 2D projections of the selected nodes
according to metrics summarized from different perspec-
tives enabling users to extract potential clusters of nodes;
the Graph View shows the whole graph; and the Feature
Matrix View shows the selected node feature information.
It further enables users to check the detailed information
of individual nodes. All four visualization components are
linked together to support users to analyze GNN models
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simultaneously from multiple angles and extract general
error patterns in GNN prediction results. Two case studies
and expert interviews demonstrate the effectiveness and
usability of our system GNNLens.

ACKNOWLEDGMENTS

We would like to thank external experts for participating in
our interviews and giving us invaluable feedback. We also
thank the anonymous reviewers for their detailed reviews
and the DGL development team for their constructive sug-
gestions. This research was supported in part by Hong Kong
Theme-based Research Scheme grant T41-709/17N.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proceedings of the 5th Interna-
tional Conference on Learning Representations, 2016.

[2] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 1024–1034.

[3] L. Chen, Y. Xie, Z. Zheng, H. Zheng, and J. Xie, “Friend recom-
mendation based on multi-social graph convolutional network,”
IEEE Access, vol. 8, pp. 43 618–43 629, 2020.

[4] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface
prediction using graph convolutional networks,” in Advances in
Neural Information Processing Systems, 2017, pp. 6530–6539.
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