
BatchLens: A Visualization Approach for Analyzing
Batch Jobs in Cloud Systems

Shaolun Ruan
School of Computing and Information Systems

Singapore Management University
Singapore, Singapore

slruan.2021@phdcs.smu.edu.sg

Yong Wang
School of Computing and Information Systems

Singapore Management University
Singapore, Singapore

yongwang@smu.edu.sg

Hailong Jiang
Department of Computer Science

Kent State University
Kent, U.S.

hjiang13@kent.edu

Weijia Xu
Scalable Computational Intelligence Group

Texas Advanced Computing Center
Austin, U.S.

xwj@tacc.utexas.edu

Qiang Guan
Department of Computer Science

Kent State University
Kent, U.S.

qguan@kent.edu

Abstract—Cloud systems are becoming increasingly powerful
and complex. It is highly challenging to identify anomalous
execution behaviors and pinpoint problems by examining the
overwhelming intermediate results/states in complex application
workflows. Domain scientists urgently need a friendly and func-
tional interface to understand the quality of the computing services
and the performance of their applications in real time. To meet
these needs, we explore data generated by job schedulers and
investigate general performance metrics (e.g., utilization of CPU,
memory and disk I/O). Specifically, we propose an interactive
visual analytics approach, BatchLens, to provide both providers
and users of cloud service with an intuitive and effective way to
explore the status of system batch jobs and help them conduct
root-cause analysis of anomalous behaviors in batch jobs. We
demonstrate the effectiveness of BatchLens through a case study
on the public Alibaba bench workload trace datasets.

Index Terms—cloud computing, visual analytics, human-
computer interaction

I. INTRODUCTION

Cloud computing has become the backbone of modern IT
systems, which supports processing large volumetric data using
clusters of computing nodes [1], [2]. Understanding the batch
jobs’ behaviors on cloud platforms is of great importance for
cloud providers and cloud service users. Anomalous behaviors
of batch jobs can potentially indicate existing software bugs
and hardware crashes, which will eventually result in the
violation of the Service Level Agreement (SLA) [3]. However,
it is still a challenging and complex task to diagnose and
prevent anomalous execution behaviors in cloud computing
environments [4].

To prevent software flaws and hardware accidents that can
result in the failure of cloud services, cloud providers have been
monitoring cloud platforms through metrics-based [5], [6], log-
based [7] and trace-based [8], [9] approaches. More recently,
deep learning-based approaches are also used for anomalous
behavior detection [10]. Prior studies, though, are effective
techniques to monitor job and system behaviors, the cause is

still invisible to the cloud system administrators due to the
hidden patterns of the batch job co-allocation. Meanwhile, the
existing tools are generally designed for system administrators,
users may also need to monitor the status of their executing
jobs so that they can provide more detailed information to
system administrators when submitting the tickets. Moreover,
the preceding methods are neither intuitive nor efficient as they
consist of large-scale general metric data, which significantly
affects the perception of the abnormal status of compute
nodes and makes system administrators suffer from monitoring
inflexibility.

Visualization tools have been extensively adopted to support
offline log analysis in a variety of cloud applications. Prior stud-
ies [11] have demonstrated that visual representation can pro-
vide rich insights in monitoring cloud computing performance,
and increase the possibility of uncovering hidden patterns in
cloud infrastructures through intuitive visual representations
and effective user interactions.

In this paper, we propose a visualization approach BatchLens
to analyze and monitor the job execution behaviors in cloud
computing systems. Compared with existing works, Batch-
Lens leverages effective visual representations and flexible
interactions to analyze and detect anomalous batch jobs in
cloud systems. Using the traces from large-scale parallel cloud
systems at Alibaba, we develop multiple mutually-linked views
to analyze the running jobs on metric-heavy compute nodes
and enhance the effective human perception for the batch jobs.
Specifically, interactive visual designs of hierarchical bubble
charts and line charts are proposed to support analysis of
abnormal jobs through temporal and spatial comparison. The
major contributions of this paper can be summarized as follows:

• We propose a novel visualization approach BatchLens
based on batch hierarchy data to enable interactive analysis
of the batch jobs in cloud systems.

• We conduct a case study on the public Alibaba trace

This is a pre-print version. The final paper will be released by DATE 2022 when available.

datasets to demonstrate the effectiveness of our proposed
approach.

II. DATASET AND DAG BATCH WORKLOADS

Alibaba trace datasets [12] is part of the Alibaba Open
Cluster Trace Program, which contains performance profile
data collected from the Alibaba large-scale distributed cloud
computing platform across 1300 machine batch jobs and a 24-
hour duration. In this paper, we only focus on batch jobs and
their dependencies. Each trace record in batch scheduler data
includes the hierarchical structure for a compute node set at
a 300-second resolution. For server usage data set, each row
includes metadata of the node and the performance log of three
metrics, i.e., GPU utilization, memory utilization and disk uti-
lization at a one-second resolution. A task has one or multiple
instances running on the respective compute node. According
to our data pre-processing, 75% batch jobs contain only one
task, while 94% tasks have multiple instances. Note that each
instance must be executed by only one compute node, and each
compute node can run multiple instances simultaneously.

III. VISUAL DESIGN

To analyze the batch job status from the perspectives of both
their spatial distribution and temporal evolution, BatchLens
provides users with multiple linked views to reveal the insights
of batch job scheduling (Fig. 3). Also, rich interactions are
enabled to facilitate convenient explorations.

A. Hierarchical Bubble Chart

The hierarchical bubble chart is an overview of batch de-
pendency, which provides a comprehensive hierarchy of batch
jobs, tasks and instances (corresponding compute nodes). We
adopt hierarchical bubble charts, as it can intuitively visualize
the hierarchy of multiple nodes.

Specifically, three layers of bubbles are applied to indicate
the hierarchical batch entities (Fig. 1). Bubbles highlighted
with blue dotted circles denote batch job level, which contains
the child level of tasks highlighted by purple dotted circles.
Each compute node, which is scheduled to execute the batch
instances and is subordinated to the respective task, is com-
prised of three parts denoting general usage metrics, i.e., CPU
utilization, memory utilization and disk I/O utilization. We
colorize the state metrics to reflect the performance of the
machines at once.

B. Line Charts

Temporal analysis on cloud computing systems facilitates
the detection of anomalous performances of compute nodes
over time. We utilize line charts to reflect metric trends and
incorporate multiple vertical annotation lines into line charts
for start time and end time representation of batch jobs.

As shown in Fig. 2, line charts are used to indicate changes
of machine utilization over time. Specifically, it shows metric
trends of those compute nodes executing the same batch job
simultaneously. For example, Fig. 2(a) visualizes the CPU
utilization of all the nodes executing job 7399 in the overall
time period. Green annotation lines denote the start time of job

Job

Task CPU utilization

Disk utilization
Memory utilization

Computing
Node

0 50% 100%

Fig. 1. Visualization of batch scheduling data encoded by hierarchical bubbles
and the color scheme for performance metrics, i.e., CPU utilization, memory
utilization and disk utilization, which are indicated by three annuli in the
detailed view.

zoom in

Task 1 Task 2

End time of nodes
under Task 2

End time of nodes
under Task 1

Start time of all nodes

���������������(%)
a b

Fig. 2. Multiple line chart reflecting the metric utilization changes of nodes
under a selected batch job over time. (a) indicates the utilization trend in
the overall time period. After selecting the time range via brushing, (b) is
generated to show the detailed view of the selected part. For both views, vertical
annotation lines in green and non-green are used to show the start time and
end time of the job execution respectively.

execution on corresponding nodes. All lines bundling into one
cluster indicates that the job is scheduled for all nodes at the
same time. Red lines depict end timestamps of job execution,
which are bundled as two clusters, as job 7339 includes two
tasks and each has a different end timestamp. Also, after select-
ing the interesting time range of overall line charts by brushing,
users can explore the detailed metric utilization (Fig. 2(b)). In
the selected detailed view, different lines and annotation lines
are plotted in various colors, which enables users to compare
node usages by task dimension. By interacting with the line
charts of various batch jobs, users can observe the temporal
patterns in terms of metric trends of compute nodes, such as a
spike or a valley in the context of other nodes’ performance.

C. User Interactions

Flexible and intuitive interactions allow a comprehensive
analysis of the batch job observation. A simple timeline is
used to represent the metrics aggregated across the entire cloud
systems over time. Each layer of the graph represents one met-
ric. Users can select an interesting time range and timestamp
through the brushing and choosing interaction respectively.

Also, another simple user interaction is adopted to recognize
the same compute node executing various batch jobs simul-
taneously. Since the hierarchical bubble chart is a job-based
graph, the same node may be rendered into multiple parent
job bubbles. A direct mouse over on target nodes will trigger
a zoom-in refresh, as shown in pairwise nodes that are linked
with the same color dotted lines in Fig. 3(b).

job_8123

job_11599

job_8121

job_8124

job_6639

a
job_7901

b c

job_11599

Fig. 3. The main view and corresponding detailed views of the visual analytics system. Detailed views of multiple line charts show the metric utilization trends
of compute nodes under a selected batch job over time. The green annotation lines in each line chart depict the start timestamps of the selected job across each
compute node executing it, while other annotation lines denote the job end timestamps using the same color as the corresponding lines of nodes.

IV. CASE STUDY

We conduct a case study using Alibaba trace datasets to
demonstrate the effectiveness of the proposed visualization
approach. We select three interesting and representative times-
tamps to illustrate the hidden patterns of abnormal machine
status (Fig. 3). It is clear that both figures are uniform in color
distribution due to the load balance.

Fig. 3(a) shows a common situation of the system, where all
the machines that host some tasks are at low resource utilization
(20% - 40%), and all the performance metrics are stable.
Specifically, from the hierarchical bubble chart, we can observe
that there are 15 root bubbles denoting batch jobs at timestamp
47400, which includes two primary jobs (Job job 8121 and
Job job 8123), both of which are scheduled into two tasks that
are executed a substantial volume of nodes. More specifically,
Job job 8124, which is scheduled into one task only, has the
nodes with the lowest utilization (CPU, memory and disk I/O).
From the line chart corresponding to Job job 8124, we can see
that the CPU utilization of all nodes is fairly constant with only
small increase during the period of job execution (between the
creation and termination of job). Also, for Job job 6639, the
lines denoting CPU utilization of nodes under four separated
tasks are plotted with four colors. These four types of tasks, as
the annotation lines plots, have the same start timestamp but
multiple end timestamps. However, CPU utilization for all the
nodes in different tasks stays stable during job executions. The
same pattern can be observed for Job job 11599.

In bubble chart of Fig. 3(b), it is clear that all nodes
are running at medium level of resource utilization around
Timestamp 46200 (50%-80%). The resource utilization on the
nodes hosting the jobs are heavier than that in Fig. 3(a) through
the color distribution of bubble charts, with an exception of Job
job 7901 running on busier nodes than those hosting other jobs.
From the line chart of the overall time period of job of job 7901
(left bottom view), we can see that the CPU utilization of
corresponding nodes is synchronized, even though drastic fluc-

tuations exist. From the detailed view (right bottom view), a
notable spike emerges for CPU and memory usage after Job
job 7901 is scheduled into the corresponding machines. Both
metrics reach the peak of the utilization when the job execution
is over, followed by a slow drop to the normal level, which
indicates that the machines running Job job 7901 experience
intensive workload during the execution time. Additionally, we
connect the same machines with colored dotted lines (green,
orange and purple) in the bubble chart to help trace down the
machines execute multiple tasks simultaneously.

More interesting findings can be revealed from Fig. 3(c).
A tremendous amount of nodes are running at high CPU-
or memory-utilization at Timestamp 43800, including several
nodes reaching the respective capacity of node performance.
From the line charts generated from Job job 7513 at the bottom
right, CPU utilization of nodes under two tasks is distinguished
by blue and purple lines. Line cluster in purple depicts the
relatively smaller task set, which has a less severe CPU and
memory usage. Also, for Job job 11939, lines denoting five
different tasks are entangled seriously as shown in the detailed
view on the top left. The same pattern can be perceived between
views for CPU and memory utilization: an obvious drop occurs
after the creation of Job job 11939. Moreover, we find that at
Timestamp 44100, all of the preceding nodes on the system
are shut down (figure at bottom left in Fig. 3(c)), and only Job
job 11599 is left on the entire platform. However, the general
metrics still exist for the corresponding machines at Timestamp
44100 in the detailed line chart on the top left. It is likely to
speculate that the compute node is suffering thrashing while
the virtual memory is overused with the degree from multi-
programming increasing. Eventually thrashing forces the CPU
utilization to decrease and the whole system is not making any
progresses. From the observation in the next time slice when
almost all jobs disappear, these jobs are very likely terminated
and relaunched by the user or system administrator to clear the
thrashing.

V. RELATED WORK

This work is related to prior research on anomalous behavior
detection in cloud systems and visualization for cloud comput-
ing analysis.

A. Anomalous Behavior Detection in Cloud Systems

Anomalous behavior detection of the distributed system is
an essential and challenging topic which attracts great research
attention. Prior works can be categorized into three groups, i.e.,
metric-based, log-based and trace-based approaches. Metric-
based [13] approach usually applies statistics on collected met-
rics, which mainly include performance metrics, e.g., through-
put and system metrics, e.g., CPU, memory and I/O. Logs are
generated along with applications’ running and reflect applica-
tion processing status and execution logic. Recent studies [14],
[15] leverage logs or traces to create workflow models for
software testing and the understanding of system behaviors.
Lou et al. [16] proposed an automaton model for reconstructing
concurrent workflows from event traces. Traces record informa-
tion for program debugging or diagnosis purposes. The preced-
ing studies are not preferred as without specifically-designed
visualization methods, inflexible row cloud trace data can not
be presented by intuitive visual summarization providing quick
and efficient analytic process.

B. Visualization for Cloud Computing Analysis

Existing visual metaphors [17], [18] have studied repre-
sentations on comparison of quantitative state changes (e.g.,
hardware metrics of compute nodes), while they are not suitable
for our application scenario as the trace data includes spatial
characteristics for topological batch distribution. Many visu-
alization tools [19], [20] serve as collecting low-level trace
data from large parallel systems. More recently, Muelder et
al. [21] proposed a typical system for cloud computing analysis
to portray the behavior of each compute node over time. A
variety of visualizations [22] have been proposed for monitor-
ing and analyzing trace data generated from cloud computing
systems. Though the preceding studies provide rich insights of
large-scale parallel network analysis, they rarely analyze the
anomalous batch jobs, which supports the anomalous behavior
detection and further conducts root-cause analysis.

VI. CONCLUSION AND FUTURE WORK

We propose a visualization approach to interactively analyze
the execution behavior using general performance metrics from
Alibaba trace datasets. We have demonstrated the effectiveness
with case studies and revealed three existing patterns of batch
jobs on cloud systems, all of which can support the perception
of the hidden reasons behind hardware-heavy compute nodes.
Although our technique may not present every facet of the
reasons for the anomalies, it provides system administrators
and cloud users with deep insights into batch job status, and
facilitate an easy detection of anomalies.

In future work, we would like to further extend our approach
from two directions. First, real-time techniques have been
extensively adopted on large-scale cloud computing platforms.
We plan to extend BatchLens into a real-time online system and

integrate it into real cloud distributed systems. Furthermore,
BatchLens is an effective approach to detect abnormal jobs
through visualizing their hardware performance metrics. But
some hidden anomalies will not affect hardware performance
significantly due to the load balance. It will be interesting to
further investigate how to recognize those hidden abnormal
statuses.

REFERENCES

[1] Rimal, Bhaskar Prasad, Eunmi Choi, and Ian Lumb. “A taxonomy
and survey of cloud computing systems.” 2009 Fifth International Joint
Conference on INC, IMS and IDC. Ieee, 2009.

[2] Lu, Gang, and Wen Hua Zeng. “Cloud computing survey.” Applied
Mechanics and Materials. Vol. 530. Trans Tech Publications Ltd, 2014.

[3] Meng, Fan Jing, et al.“Driftinsight: detecting anomalous behaviors in
large-scale cloud platform” 2017 IEEE 10th International Conference on
Cloud Computing (CLOUD). IEEE, 2017.

[4] Dean, Daniel J., et al. “Automatic server hang bug diagnosis: Feasible re-
ality or pipe dream?.” 2015 IEEE International Conference on Autonomic
Computing. IEEE, 2015.

[5] Ng, Fred. “Forcast: Public Cloud Services, Worldwide, 2014-202, 4Q16
Update.” Gartner Inc. Gartner Report G 320866.

[6] Gu, Xiaohui, and Haixun Wang. “Online anomaly prediction for robust
cluster systems.” 2009 IEEE 25th International Conference on Data
Engineering. IEEE, 2009.

[7] Fu, Qiang, et al. “Execution anomaly detection in distributed systems
through unstructured log analysis.” 2009 ninth IEEE international con-
ference on data mining. IEEE, 2009.

[8] Zhang, Hui, et al. “CLUE: System trace analytics for cloud service per-
formance diagnosis.” 2014 IEEE Network Operations and Management
Symposium (NOMS). IEEE, 2014.

[9] Dean, Daniel J., et al. “Perfscope: Practical online server performance bug
inference in production cloud computing infrastructures.” Proceedings of
the ACM Symposium on Cloud Computing. 2014.

[10] Dean, Daniel Joseph, Hiep Nguyen, and Xiaohui Gu. “Ubl: Unsupervised
behavior learning for predicting performance anomalies in virtualized
cloud systems.” Proceedings of the 9th international conference on
Autonomic computing. 2012.

[11] Xu, Ke, et al. “Clouddet: Interactive visual analysis of anomalous perfor-
mances in cloud computing systems.” IEEE transactions on visualization
and computer graphics 26.1 (2019): 1107-1117.

[12] Alibaba. 2017. Alibaba Open Cluster Trace Program.
https://github.com/guanxyz/clusterdata/tree/master/cluster-trace-v2017

[13] Guan, Qiang, and Song Fu. “Adaptive anomaly identification by exploring
metric subspace in cloud computing infrastructures.” 2013 IEEE 32nd
International Symposium on Reliable Distributed Systems. IEEE, 2013.

[14] Beschastnikh, Ivan, et al. “Mining temporal invariants from partially
ordered logs.” Managing Large-scale Systems via the Analysis of System
Logs and the Application of Machine Learning Techniques. 2011. 1-10.

[15] Lo, David, Leonardo Mariani, and Mauro Pezzè. “Automatic steering
of behavioral model inference.” Proceedings of the 7th Joint Meeting Of
The European Software Engineering Conference and the ACM SIGSOFT
symposium on The foundations of software engineering. 2009.

[16] Lou, Jian-Guang, et al. “Mining program workflow from interleaved
traces.” Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining. 2010.

[17] Tufte, Edward. “The visual display of quantitative information.” (2001).
[18] Ruan, S., Wang, Y., & Guan, Q. (2021). “Intercept Graph: An Interactive

Radial Visualization for Comparison of State Changes.” In Proceedings
of IEEE VIS 2021 (Short Paper).

[19] Shende, Sameer S., and Allen D. Malony. “The TAU parallel performance
system.” The International Journal of High Performance Computing
Applications 20.2 (2006): 287-311.

[20] Zaki, Omer, et al. “Toward scalable performance visualization with
Jumpshot.” The International Journal of High Performance Computing
Applications 13.3 (1999): 277-288.

[21] Muelder, Chris, et al. “Visual analysis of cloud computing performance
using behavioral lines.” IEEE transactions on visualization and computer
graphics 22.6 (2016): 1694-1704.

[22] Sigovan, Carmen, Chris W. Muelder, and Kwan-Liu Ma. “Visualizing
Large-scale Parallel Communication Traces Using a Particle Animation
Technique.” Computer Graphics Forum. Vol. 32.

