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M2Lens: Visualizing and Explaining Multimodal Models for
Sentiment Analysis
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Fig. 1. The explanatory interface of M2Lens consists of five views. The User Panel (A) displays the descriptive statistics about the
model and dataset. The Summary View (B) presents a global summary of the importance of individual modalities, as well as their
interactions using a three-layer augmented tree-like layout. The Template View (C) and Projection View (D) complement each other for
subset-level explanations. Specifically, Template View (C) summarizes frequent and influential templates of feature sets in a table. The
Projection View (D) supports multi-faceted explorations of instances that have features of interest. The Instance View (E) provides
local explanations by visualizing the important features and the context of individual instances.

Abstract—Multimodal sentiment analysis aims to recognize people’s attitudes from multiple communication channels such as verbal
content (i.e., text), voice, and facial expressions. It has become a vibrant and important research topic in natural language processing.
Much research focuses on modeling the complex intra- and inter-modal interactions between different communication channels.
However, current multimodal models with strong performance are often deep-learning-based techniques and work like black boxes. It is
not clear how models utilize multimodal information for sentiment predictions. Despite recent advances in techniques for enhancing
the explainability of machine learning models, they often target unimodal scenarios (e.g., images, sentences), and little research has
been done on explaining multimodal models. In this paper, we present an interactive visual analytics system, M2Lens, to visualize
and explain multimodal models for sentiment analysis. M2Lens provides explanations on intra- and inter-modal interactions at the
global, subset, and local levels. Specifically, it summarizes the influence of three typical interaction types (i.e., dominance, complement,
and conflict) on the model predictions. Moreover, M2Lens identifies frequent and influential multimodal features and supports the
multi-faceted exploration of model behaviors from language, acoustic, and visual modalities. Through two case studies and expert
interviews, we demonstrate our system can help users gain deep insights into the multimodal models for sentiment analysis.

Index Terms—Multimodal models, sentiment analysis, explainable machine learning
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Sentiment analysis aims to use computational approaches to identify
people’s attitudes, opinions, and other subjective information in human
communication. It can benefit various applications, such as customer
analysis, social robots, and political campaigns. Prior research on
sentiment analysis is mainly based on a single communication channel
(i.e., text or facial expression) [60, 64, 82], which is often referred to as
unimodal sentiment analysis. However, human communication is often
multimodal. For example, people can show their happiness through
positive words and tones, along with a wild smile. With the thriving of
social media, a large number of multimodal communication datasets
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can be collected and studied, e.g., TV series and vlogs showing people’s
sentiment towards different topics and objects. This has greatly boosted
the development of multimodal sentiment analysis techniques, and it
has already become a vibrant and important research topic.

Unlike the long-established unimodal sentiment analysis, multi-
modal sentiment analysis combines the heterogeneous data and captures
two primary forms of interactions in different modalities: intra-modal
and inter-modal interactions. Intra-modal interactions refer to the dy-
namics of one modality, which is the same as the unimodal analysis
based on the single communication channel. Inter-modal interactions
consider the correspondence between different modalities across time,
e.g., the co-occurrences of a happy tone and a smile or a sudden pause
after a humorous punchline. In practice, people’s communication styles
are highly complex and idiosyncratic. For example, a sentence may
seem semantically positive, but people can express it with a sarcastic
tone to reveal their dissatisfaction. In such cases, unimodal sentiment
analysis is not reliable, while multimodal models can offer the opportu-
nities to explore vocal and visual expressions besides texts. In addition,
previous research [4, 47, 64] has confirmed that multimodal models are
more accurate and robust in various downstream tasks.

Currently, deep-learning-based models achieve superior performance
over the traditional methods [40, 75] in multimodal sentiment analy-
sis. Representative examples include transformers [50, 69], Convo-
lutional Neural Networks (CNNs) [72], and Recurrent Neural Net-
works (RNNs) [48, 51, 78]. However, these models often work like
black-boxes, hindering users from understanding the underlying model
mechanism and fully trusting them in decision-making. Enhancing the
explainability of deep learning models has become critical for both
model developers and users, and received increasing attention in the
past few years [3, 23]. For example, post-hoc explainability techniques,
such as LIME [54], SHAP [38], and IG [67], help identify important
features (e.g., words or image patches) that influence model predictions.
However, these methods often target providing local explanations on
instances (e.g., sentences) in unimodal scenarios. They do not scale
well to produce global explanations on how intra- and inter-modal in-
teractions influence the model decisions, for example, how the models
will behave when positive words and sad voices are presented.

It is challenging to explain multimodal models for sentiment analy-
sis. First, it is necessary to relate the model performance back to the
multimodal input data [44, 53]. The heterogeneity and high dimen-
sionality of multimodal human behaviors make it difficult for users to
easily interpret the input features or data, as well as how they affect
model decisions. Compact and human-friendly summaries of multi-
modal data are highly desired, but little research (if not no) has been
done on it. Second, it is non-trivial to explain inter-modal interactions
between different modalities explicitly, which, however, are the unique
characteristics of multimodal sentiment analysis models. For example,
when a person says something positive with a neutral voice and facial
emotion, users may feel interested in whether the models can discern
positive sentiment in the language modality (i.e., the text).

In this paper, we propose M2Lens, a novel explanatory visual ana-
lytics tool to help both developers and users of multimodal machine
learning models better understand and diagnose Multimodal Models for
sentiment analysis. By considering the feature importance measured
by post-hoc explainability techniques, M2Lens interprets intra- and
inter-modal interactions learned by a multimodal language model from
the global, subsets, and local levels. Particularly, we focus on interpret-
ing three typical types of interactions, i.e., dominance, complement,
and conflict. Moreover, it facilitates a multi-faceted exploration of the
multimodal features and their influences on the model decisions for
sentiment analysis. M2Lens consists of four major views. Specifically,
the Summary View features an augmented tree-like layout for global
explanations of the impacts of individual modalities and their interplay.
The Template View summarizes influential and frequent multimodal
features with compact templates. The Projection View enables multi-
faceted exploration of the features of user interest using different glyph
designs. The Instance View visualizes individual multimodal instances
and their explanations with details.

In summary, our major contributions are:

• M2Lens, a visual analytics system to produce multi-level and
multi-faceted explanations on intra- and inter-modal interactions
that are learned by the multimodal models.

• Case studies and expert interviews that demonstrate the effective-
ness of our approach in helping users gain deep insights into two
state-of-the-art multimodal models for sentiment analysis.

2 RELATED WORK

This section discusses the relevant research of our approach, including
multimodal language analysis, post-hoc explainability techniques, and
machine learning interpretation with visualization.

2.1 Multimodal Sentiment Analysis
Multimodal sentiment analysis is a vibrant topic in natural language
processing (NLP). It automatically extract people’s attitudes or affective
states from multiple communication channels (e.g., text, voice, and
facial expressions). Moreover, it has various applications [24, 80, 81].
The core challenge is modeling the complex intra-modal and inter-
modal interactions, where multimodal features are being fused.

Early work [35, 41] concatenated features from different modali-
ties before being input to a learning model. Conversely, some work
adopted late-fusion approaches that combine the decision values from
individual unimodal models using a voting scheme [42, 49] or a learn-
ing model [17, 52]. However, these methods ignore the cross-modal
interactions. To address such issues, some work explicitly computed
the unimodal, bimodal, and trimodal features and fused them with
tensor product [36, 76] and dynamic routing [70]. Recently, neural
network methods [11, 46, 51, 69, 77, 78] are popular to model the com-
plex interplay between modalities. For example, researchers [11, 51]
have extended LSTM cells and gates to learn temporal interaction
patterns among multimodal sequences. Pham et al. [46] proposed
attention-based RNNs to learn multimodal representations with a cyclic
translation loss among modalities. Zadeh et al. [77] designed a multi-
view gated memory unit that is controlled by neural networks. It stores
and predicts temporal cross-modal interactions. Tsai et al. [69] utilized
transformer attention mechanisms to learn both cross-modal alignment
and interactions. Although neural networks greatly improve the perfor-
mance over traditional methods, their complex architecture seriously
affects the model interpretability. This paper presents an explanatory
interface to diagnose black-box models for sentiment analysis tasks.

2.2 Post-hoc Explainability Techniques
Post-hoc explainability techniques interpret models after the training
process [3, 37]. They generally include model-specific and model-
agnostic approaches [37]. Model-specific methods explain particular
models ranging from shallow models [18, 68] to sophisticated neural
networks [30, 61]. In contrast, model-agnostic methods are flexible
enough to be applied to any machine learning model. Here, we dis-
cuss two main types of model-agnostic approaches: explanation by
simplification and feature relevance explanation [3].

For simplification techniques, researchers often built surrogate mod-
els (e.g., rule-based learners [25, 29, 55], decision trees [5], and linear
models [54]) to imitate the original model behaviors with reduced com-
plexity. One of the most representative methods is LIME [54], which
builds locally linear models to approximate individual predictions based
on neighbors of instances of interest. Feature relevance explanation
quantifies the feature contributions to model predictions. One popular
example is SHAP [38], whose mathematical root is Shapley Value [62]—
a method from cooperative game theory. SHAP computes an additive
importance score for each feature to describe its influence, given a pre-
diction result. It has desirable properties (local accuracy, missingness,
and consistency) and is proved to be aligned with human intuitions.
Other work used local gradients [57], randomized feature permuta-
tions [21], or influence functions [28] to disclose feature relevance.

However, the methods above are often used to interpret specific
instances of one modality (e.g., sentences, images), which cannot be
directly applied to multimodal sentiment analysis. This paper aims to
fill the gap by enabling multi-level explanations on the learned intra-
and inter-modal interactions from global, subsets, and local levels.
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2.3 Machine Learning Interpretation With Visualization
With the increasing complexity of both data and machine learning
models, various visual analytics systems have been proposed to assist
in understanding the model behaviors. Besides measuring the model
performance with computational metrics, users also need to explore
when and why a model makes specific decisions [23]. One of the most
common and important interpretation strategies in previous work is to
reveal the relationship between the input data and model predictions [3,
23]. They can be categorized into two groups: instance exploration and
feature & subset exploration.

Instance visualization shows model behavior towards individual
data samples. Amershi et al. [2] presented ModelTracker to support
performance debugging with a visual summary of binary classification
instances. Ren et al. [53] extended the performance visualization to
multi-class scenarios with aligned vertical axis designs, while Kahng et
al. [26] and Alsallakh et al. [6] adopted a matrix-like design for instance
summary. Apart from visualizing instance distributions, Kulesza et
al. [34] built an exploratory debugging prototype to enable users to
explain corrections back to models. In addition, there are tools [20, 63]
that allow users to interactively probe models with provided inputs.

Feature and subset visualization investigates how to surface the pat-
terns groups of features [7,31, 32] and instances [1, 9, 74,83] that affect
model decisions. Brooks et al. [7] developed FeatureInsight, which sup-
ports the feature ideation process with a visual summary of set errors.
Krause et al. [31] enabled exploration of the predictive power of feature
candidates across different feature selection algorithms. For specific
applications in CV and NLP, features are often visualized as image
patches [43, 61, 65] or text segments [16, 27]. Besides, researchers
built interactive tools to facilitate group-level exploration. Zhang et
al. [83] conducted feature attribution comparisons to inspect discrepan-
cies across different data subsets. Some work [1, 9, 74] used fairness
metrics to partition data into groups for model diagnosis.

However, these methods do not consider exploring multimodal fea-
tures and determining how much they affect model decisions. Our
system facilitates multi-faceted exploration of multimodal features and
generates multi-level visual explanations on their influences.

3 BACKGROUND

In multimodal sentiment analysis, a machine learning model predicts
sentiment based on the visual, acoustic, and language features ex-
tracted from the raw video data. This section introduces the related
background about multimodal datasets, feature engineering techniques,
performance metrics, and intra- and inter-modal interactions.

3.1 Dataset
There is a wide range of multimodal datasets in the community. For ex-
ample, IEMOCAP [8] contains 151 videos of dialogues with different
emotion labels. YouTube [40] consists of videos of product reviews
extracted from the social media website, YouTube. Without loss of
generality, our work focuses on the largest and widely-used benchmark
dataset for multimodal sentiment analysis, i.e., CMU-MOSEI [79]. It
consists of 23,454 monologue movie review video clips from 1,000
speakers and 250 topics in YouTube. The sentiment of each video clip
is labeled by three annotators with a Likert scale of [−3,3], where 3 in-
dicates strongly positive, −3 represents strongly negative, and 0 means
neural. Besides the sentiment label, each video is associated with the
information from the three communicative channels—transcripts for
language resources (l), facial expressions for the visual (v), and voice
of speakers as the acoustic modalities (a).

3.2 Multimodal Feature Engineering
Prior research on multimodal models mostly uses different feature
engineering techniques for all three modalities in sentiment analysis.
Here, we follow the common practice of multimodal feature extraction
(also provided by CMU-MOSEI). For language features, transcripts are
encoded by high-dimensional word vectors. We leverage Glove embed-
dings [45] to represent each word, where each word is transformed to a
300-dimension vector. For visual modality, most work focuses on facial
expressions, which are often encoded by Facial Action Coding System

(FACS) [15]. FACS encodes the facial muscle movement with 35 facial
action units. We deploy it to extract frame-level facial features. The
acoustic features are engineered through a speech processing frame-
work, COVAREP [13]. The extracted features have 74 dimensions, and
all of them are related to speech emotions and tones. To help users gain
a quick overview of these fundamental features, we further group them
into different classes, which will be introduced in Sect. 5.2.2.

3.3 Metrics for Multimodal Sentiment Analysis
Prior work applies several metrics to evaluate the model performance
for multimodal sentiment analysis, including mean absolute error
(MAE), the correlation between the model predictions and human labels
(Corr.), F1 score (F1), 7-class accuracy (Acc7), and 2-class accuracy
(Acc). Note that Acc7 considers all of the sentiment scores Z ∈ [−3,3],
while Acc is a binary classification score that only predicts whether this
video clip is positive or negative.

3.4 Intra- and Inter-modal Interactions
In practice, sentiment analysis relies on multimodal language signals
(e.g., language, facial expressions, and tones). A successful multimodal
sentiment analysis requires the understanding of the combinations of
these signals, where two primary forms of interactions exist—intra-
and inter-modal interactions [4, 64].

When modeling intra- and inter-modal interactions, three typical
situations arise [4, 64, 77]:

• One modality is dominant for sentiment analysis. For example,
people may show agreement by nodding their heads, where the
vision modality dominantly indicates their positive attitudes.

• More than one modalities complement each other when people
are expressing their sentiment. For example, people’s positive
attitudes in words can be enhanced by a happy tone.

• More than one modalities conflict with each other. For example,
people may tell sad stories with smiles on their face.

Researchers have tried to build models to analyze the situations above
for better sentiment analysis. However, most state-of-the-art models
are deep-learning-based techniques with little interpretability. Model
developers and users are not aware of how exactly the model utilizes
information in multiple modalities in situations of dominance, com-
plement, or conflict. Explaining multimodal model behaviors not only
provides insights into the multimodal language characteristics, but also
reveals the model errors and inspires new model designs. In our work,
we explicitly provide global explanations on intra- and inter-modal in-
teractions with a compact visual summary. Specifically, we categorize
instances into dominance, complement, and conflict groups based on
the importance of each modality computed by SHAP [38]. Furthermore,
we summarize influential feature sets for each group with templates to
provide finer-grained explanations on model behavior.

4 DESIGN REQUIREMENTS

Our goal is to develop a visual analytics system to help users (e.g.,
model developers and model users) understand and diagnose the be-
haviors of multimodal models for sentiment analysis. Similar to the
general black-box explanation tools [2, 32, 53, 83], interpreting mul-
timodal models helps target users gain insights into the connection
between the model performance (e.g., model errors) and the characteris-
tics of multimodal data. For example, model users can examine whether
a model has a bias or poor performance on some types of data and fur-
ther decide if it is a proper fit for target applications. Furthermore, given
the critical aspects of multimodal sentiment analysis (in Sect. 3.4), it
is beneficial to explain the intra- and inter-modal relationships learned
by the model. For instance, model developers can adjust the fusion
weights of different modalities based on their relative importance to
achieve better sentiment predictions. However, it is challenging to
interpret multimodal models due to the high complexity of multimodal
data and inter-modal relationships.

To understand users’ general needs and formulate design require-
ments, we surveyed prior visualization techniques for interpreting ma-
chine learning models [2, 3, 7, 10, 26, 31, 32, 39, 53, 83] and multimodal
language analysis [4,41,69,70,76,79]. Also, we worked closely with a
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researcher in NLP and multimodal machine learning (who is also a co-
author of this paper) for about five months to collect his feedback and
iteratively refine the design requirements. We summarize the design
requirements as follows.

R1: Show the model performance. Performance metrics are cru-
cial for guiding the model analysis [2, 53]. They provide quantitative
measures of how accurate the predictions are and can help users pin-
point where the model is likely to fail. The users often want to evaluate
models at different levels:

Q1: What are the overall error distributions for model predictions?
Q2: What are the instances that are predicted with large/small errors?

R2: Reveal the contributions of modalities to the model predic-
tions. Besides performance metrics, the system should provide global
explanations on how the model generally works, especially when work-
ing with huge datasets [3, 10, 26, 39]. In multimodal sentiment analysis,
intra- and inter-modal interactions are crucial for understanding the
model behaviors [4,41]. Thus, it is essential to summarize the influences
of individual modalities and their interplay for predictions. Specifically,
the system should help users answer the following questions:

Q3: How does each modality influence the model predictions? Dis-
playing the contributions of each modality helps users prioritize their
efforts in diagnosing a particular modality for model predictions [76].
Q4: Which modalities dominate the model predictions? Also, which
modalities complement or conflict with each other for model predic-
tions? To better reveal the characteristics of multimodal interactions
captured by the model, the system should further summarize the in-
stances according to the interaction types [69, 70, 79]. Specifically,
dominant, complementary, and conflicting modalities, which depict
typical interaction types, are the targets for analysis.
Q5: How do dominant/complementary/conflicting modalities influ-
ence the model predictions? Besides recognizing the learned interac-
tion types, it is also essential to connect them to the model predictions
for a comprehensive understanding of model behaviors [2, 53, 83].
For example, the dominance of language modality can contribute to
positive or negative sentiment for different instances.

R3: Identify the influences of multimodal features for the model
predictions. With a global understanding of how the model work
on individual modality (R2), users need to drill down to finer-level
inspection on model behaviors. Feature-based exploration is a common
and effective approach for explaining machine learning models [7,
31, 32]. Accordingly, the system should connect high-level modality
interactions with the corresponding multimodal features. For example,
users may want to know when the language modality dominates the
predictions and what words people use to express their sentiments.

Q6: What are the feature sets that significantly contribute to pos-
itive/negative sentiment predictions? Exploring all the features of
instances individually is tedious given the high volume and dimen-
sionality of multimodal data. Summarizing the set of features with a
significant predictive contribution helps reduce the efforts in explo-
ration [7, 31]. In addition, it helps users develop a high-level concept
about model predictions. For example, users may want to know
what types of words or facial expressions are considered important to
models when dealing with positive sentiment cases.
Q7: What features are considered important by the model? Are they
plausible for prediction? To help users analyze the individual predic-
tions, features with a significant influence on the model performance
should be presented to users and allow them to judge whether they
align well with the observation of the original data.

R4: Support multi-level and multi-faceted exploration of the
multimodal model behaviors. Given the multimodal settings of senti-
ment analysis, the visualization should empower users to explore the
relationships between the model and input data from multiple aspects
(e.g., language, facial expressions). To facilitate a comprehensive un-
derstanding of multimodal models, explanations should be offered on
different levels, including the influences of individual modalities and
their interplay, and the importance of multimodal features.

5 M2LENS

Based on the derived design requirements (Sect. 4), we develop a visual
analytics system, M2Lens (Fig. 1), for understanding and diagnosing
how models utilize multimodal information for sentiment prediction.
In this section, we first provide an overview of the system architecture.
Then, we will illustrate the methods for generating explanations of
multimodal model behavior. Next, we describe the visual designs and
interactions in detail.

5.1 System Overview
Fig. 2 shows the system architecture. First, speakers’ opinion videos are
transformed into visual, acoustic, and language features. The storage
module saves users’ model and data with processed features. Then, the
explanation engine inputs the features into the model and generates
multi-level explanations of model behaviors based on the feature at-
tribution methods (e.g., SHAP). The visual analysis module enables
interactive exploration of the explanations through five main views.

Visual Analysis

This is  a good movie

Loud voice

Data Features

Opinion
Videos Smile

����

����

����
Machine learning model

Global level Subset level

Local level

Storage

Lorem ipsum

Explanation Engine

Global level

Subset level

dominance

complement

con�ict

�

�
�

bad Joy

Sadnessgood

Face emotionADJ

Transform
Local level (Feature importance)

Fig. 2. M2Lens consists of a storage module, an explanation engine, and
a visual analysis interface.

The User Panel is the entry point of the whole interface, where the
descriptive statistics about the model performance and dataset (Q1) are
shown. Then, Summary View, Template View, Projection View, and
Instance View provide multi-level model explanations from language,
visual, and acoustic modalities (R4). The Summary View presents a
global summary of the influences of individual modalities and their
interplay for the sentiment predictions (R2). The Template View and
Projection View complement each other for subset-level explanations
(R3). Specifically, Template View uses templates to summarize feature
sets that frequently and significantly contribute to the model predictions.
Projection View supports the multi-faceted exploration of instances
that have features of interest, along with their prediction errors. The
Instance View summarizes instance-level prediction information (e.g.,
errors) (Q2) and offers local explanations on the importance of each
modality and its features (R4). In addition, it adds the audio and vision
features along the spoken words and provides the corresponding raw
video clips with feature annotations for further exploration.

5.2 Multi-level Explanations
To facilitate users with a comprehensive understanding of multimodal
behavior, we propose methods to generate global and subset-level ex-
planations (R2, R3). They supplement the local explanations computed
by feature attribution methods.

5.2.1 Global Explanations
Since the intra- and inter-modal interactions lie at the heart of multi-
modal sentiment analysis, they are essential for users to understand how
the multimodal model utilizes the information from different modalities
(i.e., language, audio, and vision) (R2). In our work, we character-
ize three typical types of interactions among modalities—dominance,
complement, and conflict (details are in Sect. 3.4).

The dominance suggests that the influence of one modality domi-
nates the polarity (i.e., positive or negative) of a sentiment prediction.
The complement indicates that two or all three modalities affect a
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model prediction in the same direction (i.e., positively or negatively).
Conversely, the conflict reveals that the influences of modalities differ
from each other. According to the definitions above, we formulate a set
of rules to identify them (Algorithm 1). Specifically, The influence of
the interactions on the model output is based on the importance of each
modality (Il , Ia, Iv), which is the summation of the importance of all
its features. Then, we extract and summarize the interactions (L) with
strong influences for all the predictions. The thresholds for our rules
are determined by maximizing the distances between the interaction
types while minimizing the average influences of interactions that do
not belong to dominance, complement, or conflict (i.e., others):

argmax
{T hsig,T hdom,T hcon f l}

1
|L|2

L

∑
i

L

∑
j

dist(Li,L j)− L̄others (1)

where Li (i ∈ {dominance, conflict, complement, others}) is the in-
teraction types output by Algorithm 1 for all the instances, dist is the
Euclidean distance between the average influences of Li and L j.

Algorithm 1 Rules for extracting important relationships of modalities.
Input: {Il , Ia, Iv}; T hsig,T hdom,T hcon f l(∈ (0,1));
Output: Label for the interaction types, l;
1: if ∀i ∈ {l,a,v}, |Ii|> T hsig then
2: /* important interactions */
3: if ∃i, j ∈ {l,a,v}, Ii ·∑ I j > 0, |Ii|

‖I‖ ≥ T hdom then
4: l = dominance;
5: else if ∃i, j ∈ {l,a,v}, Ii · I j < 0,∑ Ii

‖I‖ ≤ T hcon f l then
6: l = conflict;
7: else if ∃i, j ∈ {l,a,v}, Ii · I j > 0 then
8: l = complement;
9: else

10: l = others;
11: else
12: l = others;

5.2.2 Feature Templates

Compared with inspecting the impacts of individual features, exploring
feature groups is more effective for analyzing complex model behav-
iors and data characteristics [26, 33]. It helps users develop a mental
model about the model decisions (Q6). For example, what types of
words (e.g., adjectives) are considered important indicators for positive
sentiment. To ease the exploration of influences of high-dimensional
features, we organize the model’s input features introduced in Sect. 3.2
into several meaningful groups. Then, we summarize frequent and
influential groups with compact templates (Fig. 1C).

To promote the understanding of model behaviors, we first identify
several feature sets based on the sentence structures for the language
modality, emotion-related features for the acoustic modality, and facial
expressions for the visual modality:

• Language: part of speech (POS)1 (e.g., noun, adjective, verb);
• Audio: pitch, amplitude, glottal/voice quality, and phase;
• Vision (i.e., Face): face parts (i.e., brow, eye, nose, lip, and chin),

head movement, and face emotions.
For language modality, POS features provide a compact summary
of the structure of language use. They have been widely used as a
probe for natural language models [56, 58, 66]. The audio features are
grouped according to a state-of-the-art speech processing framework,
COVAREP [13], and speech applications [59, 73]. These sets generally
relate to the emotions and tones of speech. For face-related features,
we divide them into the face parts, head movement, and face emotions.
They are the representative components in the facial action coding
system (FACS) [14] for describing facial expressions. For the mapping
between low-level multimodal features and the feature sets, please refer
to the supplementary material.

1https://universaldependencies.org/docs/u/pos/
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Fig. 3. Design choices for the Summary View . A: An augmented Sankey
diagram. B: Our current design of augmented tree-like layout.

After grouping the low-level features for each modality, we construct
templates for both the frequent feature sets (e.g., “ADJ”) and features
(e.g., word “good”) that have a strong influence on predictions (Q6).
Specifically, we create itemsets of important features and feature sets
for all predictions. Then, we build FP trees [19] to find frequent patterns
within the itemsets. For example, if “PRON” and “PART” or the word
“not” constantly appear, they will be recorded in the templates (Fig. 1C).

5.3 User Interface
Based on the generated explanations, the user interface of M2Lens
facilitates multi-level exploration of model behavior from the perspec-
tive of language, acoustic, and visual modalities (R4). All the views
are tightly integrated with interactions to ensure a smooth transition
between different levels of explanations. They share the same color
encoding scheme where dark red means strong positive sentiment and
dark blue represents strong negative sentiment.

5.3.1 Summary View
The Summary View presents an overview of the intra- and inter-modal
interactions that are learned by the selected model in the User Panel
(R2). The influences of individual modalities and their interplay are
visualized in a three-layer augmented tree-like layout (Fig. 3B).

Visual designs. In the parent node, a barcode chart and a line chart
show the distributions of the ground truths and model prediction errors,
respectively (Q1). The vertical height of the barcode represents the total
number of instances, and the color displays the sentiment. Meanwhile,
the horizontal position of the line chart suggests the absolute error, and
the mean error is represented as a dashed line.

The second layer presents the importance of individual modalities in
bee swarm plots (Q3). They are arranged according to the influences
of modalities in descending order. For each node in the layer, a blue
bar is put to the left, whose horizontal length summarizes the total
influences of the modality. Besides, the dots in the bee swarm plot and
their projections (i.e., the barcode below) demonstrate the distribution
of the influences of that modality for all the instances. The color and
horizontal position of the dots encode the importance values, while the
two gray lines indicate the magnitude of mean absolute importance.

The last layer summarizes the information about the four types of
interactions (Sect. 5.2), where the most influential one is shown at
the top (Q4, Q5). For each interaction, the horizontal range of all its
charts marks the number of instances in that group. To better surface
the patterns of how the combinations of modalities affect the model
predictions, we put the data instances close to each other if all their three
modalities share similar influence patterns. Specifically, the similarity is
measured by the farthest distances among three modalities between the
instances. Then, a line chart and a barcode chart at the top summarize
the error and prediction patterns, which are similar to the parent node.
In addition, three barcode charts are attached below to present the
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Fig. 4. The glyph designs in the Projection View . A: Chernoff face glyph
designs. The left one with darked colored rings and thick strokes of face
parts indicates intense facial movement, while the right one suggests
little facial movement. B: Audio glyph designs. The left one with big blue
sectors indicates high pitch, while the right one suggests low pitch.

distribution of importance of all three modalities. Their vertical orders
show the total influences of the corresponding modalities, which are
summed up by the blue bars to the left. The color of the bars inside the
barcodes represents the importance values.

Besides, between two neighboring layers, links are drawn from the
parent nodes to their child nodes. The width of a link is proportional to
the importance of the child node to the model predictions.

Design choices. We have considered an alternative design (Fig. 3A)
based on the Sankey diagram to reveal the intra- and inter-modal in-
teractions and their importance to the predictions. It consists of three
parts, the ground truth information at the left, the influences of indi-
vidual modality at the center, and the inter-modal interactions at the
right. The width of a flow is proportional to the importance of the target
node of the flow. The barcode chart of each node further displays the
importance distribution. In addition, the orange lines of the nodes show
the error distribution to guide the exploration. However, one expert
commended that it would be necessary to demonstrate more detailed
information on each node. For example, what modalities dominate
the predictions, and what is the frequency? Therefore, we augment
the nodes with graphs and further convert the Sankey diagram into a
compact tree-like layout, which leads to the current design (Fig. 3B).

5.3.2 Template View
To facilitate the exploration of feature sets and their influences, the
Template View (Fig. 1C) summarizes frequent and influential templates
of multimodal features in a table (Q6).

Visual designs. The Template View has four columns describing
information about the template types, support, importance, and predic-
tions and errors (R1, Q6). The first column records the names of feature
sets by default. If a feature set contains frequent and important features,
a green bar will be placed to the right denoting the number of children
for the feature set. Users can collapse the corresponding row for detail
by clicking the Z. The second table column displays the frequency
for the templates. The distribution of the templates’ importance and
prediction information is visualized in the third and fourth columns.
They share the same visual representations with the Summary View
(Sect. 5.3.1). Users are enabled to sort the templates according to their
support, importance, and errors. In such a way, they can prioritize their
efforts in diagnosing the complex model behavior.

5.3.3 Projection View
To further support the subset-level exploration of model behavior (R3,
Q6), the Projection View (Fig. 1D) connects the multimodal feature
templates in the Template View with the instances. It allows users to
examine the detailed information (e.g., feature values, prediction errors)
about features across the instances. For example, after users select the
“ADJ” template in the Template View, they may feel intrigued by what
adjectives associate with large errors or with positive predictions. Then,
they need to further inspect the individual instances.

Visual designs. To summarize the feature sets of a group of in-
stances, we project the high-dimensional features onto a 2D plane
using t-SNE [71]. Thus, instances with similar features will be placed
close to each other. Given textual, acoustic, and visual features are
heterogeneous, we design three different glyphs to encode the feature
sets of the instances. Users can switch between views to see the feature
distribution of each modality. Moreover, to help diagnose the model

behavior (e.g., errors), we add a heatmap as the background to display
the distribution of prediction errors or template importance.

• Language: since words already carry semantic meanings, we use
them to represent the textual features. In addition, we add a circle
for each word, whose color encodes the sentiment prediction.

• Vision: our glyph designs for facial features (Fig. 4A) are inspired
by Chernoff face [12], which is popular for displaying facial
expressions. However, the original Chernoff face cannot reflect
information such as head movement. Therefore, we add three
sticks around the face to indicate the head movement in the yaw,
pitch, and roll axis, respectively. The outer ring encodes the
whole face information (e.g., emotion in our case), where the dark
color suggests large feature values. Moreover, the stroke width of
face parts (e.g., nose) and sticks mean movement intensity. The
sentiment prediction is revealed by the face’s background color.

• Audio: to help understand acoustic features, we group them into
higher-level classes (Sect. 5.2.2). As shown in Fig. 4B, each
colored sector represents the features of a class, where the radius
relates to feature values. The sectors at the front summarized the
average values of normalized features, while the small ones at the
back display detailed feature values of the classes. Additionally,
the inner circle color shows the sentiment prediction.

5.3.4 Instance View
The Instance View (Fig. 1E) provides local explanations by visualizing
the important multimodal features and the context (i.e., transcripts and
videos) of individual instances (Q7).

Visual designs. The left column presents a visual summary of
the influences of modalities on the model predictions, as well as the
prediction errors. Users can sort the instances according to different
criteria (e.g., error) at the header and prioritize their efforts in instance-
level exploration. In each row, the horizontal axes demonstrate the
sentiment range, where the prediction and ground truth are marked.
Between the two values, the thick red line suggests the error. Below
the prediction mark, three colored rectangles represent the aggregated
feature importance values of the three modalities. The length and color
of each rectangle encode the magnitude and sign of importance. For
example, the modality with negative influences on the prediction will
be encoded by a blue rectangle and placed at the right. In addition, the
feature table below allows users to sort and search for the importance
values of features or modalities.

To promote a comprehensive understanding of the context of indi-
vidual instances, the right column highlights the important features of
the instances. Unlike intuitive texts, the acoustic and visual features are
harder to recognize. Thus, we align them with the spoken words and
draw the most important ones using orange lines. The lines above the
words correspond to acoustic features, while the lines below represent
the visual features. The vertical offset of the lines denotes the feature
values, and hence the fluctuations indicate the feature variation. In ad-
dition, the backgrounds of texts or feature lines reflect the importance
of multimodal features at a word level.

The Instance View also provides video context for instance-level ex-
ploration. When users click on the rows of the table, the corresponding
video clips will pop up and play. To make the visual features more
intuitive, the top-ranked facial features (sorted according to importance
value) are highlighted with bounding boxes that cover the correspond-
ing parts of the face. Users can further find the detailed facial action
units and their concrete meanings by hovering on the boxes.

5.3.5 User Interactions
The M2Lens provides a rich set of interactions, which help unify the
different views and facilitate multi-level and multi-faceted exploration
with details on demand.

Brushing. Users can brush the barcodes in the last layer of Summary
View to emit a query on the specific data instances of an interaction
type. Then, the Template View and Instance View will show the related
templates and local explanations, respectively.

Clicking. Many interactions in the system can be triggered and
undone by clicking. For example, clicking the table rows in the Tem-
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plate View will filter the irrelevant instances in the Projection View
and Instance View. Users can switch between feature projections of
different modalities by clicking the radio buttons in the Projection View.
When clicking the table rows in the Instance View, the corresponding
instances in the Projection View will be shown, and its video clips
will pop up and play. In addition, users can click on the header of the
Template View and Projection View to undo the previous selections.

Lasso and semantic zooming. To facilitate scalable exploration,
users can use lasso or semantic zoom to focus on specific instances of
interest in the Projection View. Then, the detailed information will be
displayed in the Instance View.

Searching, sorting, and filtering. To narrow down the exploration
space, users can sort and search for the instances or features in the table
of Template View and Instance View. By adjusting the sliders in the
Projection View, users can filter the instances according to the sentiment
predictions and the feature importance of specific modalities.

6 EVALUATION

In this section, we demonstrate how M2Lens helps users understand
and diagnose multimodal models for sentiment analysis through two
case studies and interviews with three domain experts (E1, E2, and
E3) using the CMU-MOSEI dataset. E1 and E2 are NLP researchers
who have multiple top research publications on multimodal language
analysis (e.g., emotion recognition). E3 is a senior software engineer
who has five years’ experience in developing affective computing ap-
plications. The two cases are discovered by E1 and E2 during the
system exploration in the interviews. The detailed feedback from all
the experts is also collected and summarized.

6.1 Case One: Multimodal Transformer
In the first case, the expert E1 explored and diagnosed a state-of-the-art
model, Multimodal Transformer (MulT) [69], for sentiment analysis
using the CMU-MOSEI dataset (Sect. 3.1). MulT fuses multimodal
inputs with cross-modal transformers for all pairs of modalities, which
learn the mappings between the source modality and target modality
(e.g., vision→ text). Then, the results are passed to sequence models
(i.e., self-attention transformers) for final predictions. All the multi-
modal features of the input data are aligned at the word level based on
the word timestamps. Following the settings of previous work [69],
we trained, validated, and evaluated MulT with the same data splits
(training: 16,265, validation: 1,869, and testing: 4,643). The details
about the MulT are included in the supplementary material.

During the exploration, E1 observed that the language modality often
dominates the predictions, and the model cannot handle the negations
in sentiment analysis very well. He further investigated the dominance
of visual modality, where “Joy” and “Sadness” (two facial emotions)
frequently co-occur. It was thought to be caused by the intense facial
muscle movement, which was also captured by the model.

6.1.1 Dominance of Language Modality
Global summary (R1, R2) After selecting the MulT and valid set
in the User Panel, E1 felt interested in how individual modalities
and their interplay contribute to the model predictions. By looking
at the second layer of the Summary View (Fig. 1B), E1 found that
the language modality (indicated by the letter “L”) has the largest
influence among the three modalities since it has the longest bar to the
left and widest range of dots in the bee swarm plot. On the contrary,
the acoustic modality (indicated by the letter “A”), which ranks at the
bottom, has the least influence. Then, E1 examined the last layer, where
the dominance group with the widest barcode charts is shown at the
top. Within the group, he discovered that the longest bars attach to the
language modality, and the color of the prediction barcode aligns well
with that of the language barcode. Thus, E1 concluded that the language
also plays a leading role in the dominance relationship. Furthermore,
he noticed that there are a group of dense blue bars appearing at the
end of the language barcode, where the errors are relatively large (as
indicated by the yellow curve above the dashed line). He wondered
what features or their combinations cause the high errors. Therefore,
we brush the corresponding area of the blue bars.

A

B

Fig. 5. Examples of double negations. “not...sin” (in A) and “not..bad”
(in B) are considered as indicators for negative sentiment by the model.
However, these phrases reflect sentiments that are slightly positive.

Subset exploration (R1, R3, R4) The Template View (Fig. 1C)
lists all the frequent and important feature templates for the brushed
instances in the Summary View. By sorting them in descending order
of error, E1 found that the “PRON + PART” appears at the top with one
child feature. Then, he collapsed the row and found that 21 instances
contain the word “not”, where it negatively influences the predictions
(blue dots in the bee swarm plot in the “importance” column). Next, he
clicked “not” to see the details about this feature in the Projection View.
Zooming in on the word “not”, several similar negative words (e.g.,
“isn’t”, “wouldn’t”) were observed (Fig. 1D). They were all located
in a red area, indicating large errors. E1 speculated that the model
cannot deal well with negations. Subsequently, he lassoed these words
to closely examine the corresponding instances in the Instance View.

Instance exploration (R1, R3, R4) To further evaluate how the
model handles negations, E1 started with the instances with large errors
in the table (Fig. 1E). When exploring the top-listed examples, E1
observed that negations always have significant negative influences on
the predictions, and the model fails to interpret the true sentiment. For
example, E1 found a case where the language modality dominates the
negative sentiment prediction, and the word “not” is highlighted in
blue (Fig. 1E). However, the true sentiment of this sentence is positive,
where the starting phrase “I really like” demonstrates the positive
attitude. However, the model fails to extract the keywords and relies on
the negation (i.e., “not”) to predict the negative sentiment. Moreover,
E1 noticed that when double negations appear in a sentence (Fig. 5),
the model tends to treat them separately and regards both of them
as indicators for negative sentiment. However, in fact, these double
negations reflect sentiments that are slightly positive.

6.1.2 Dominance of Visual Modality
Global summary (R1, R2) E1 referred back to the “dominance”

group in the Summary View, where a collection of red bars from the
prediction barcode conform with the ones from the visual modality
(highlighted red in Fig. 1B). The visual modality dominates the predic-
tions, and the error line chart above suggests a low error rate in contrast
with the previous case in Sect. 6.1.1. Motivated by this observation, E1
brushed the red bars to investigate the patterns in the visual features.

Subset exploration (R1, R3, R4) In the Template View, “Face
Emotion” has the largest support (Fig. 6A). After unfolding the row, E1
found that “Joy + Sadness” is a frequent and important combination.
This intrigued him to find out how a contrary emotion pair co-occurs.
After clicking the template, the corresponding glyphs are highlighted
in the Projection View (Fig. 6B). Most of them are found outside the
red area, which verifies that the instances with“Joy + Sadness” often
have small prediction errors. He decided to inspect these instances.

Instance exploration (R1, R3, R4) Through browsing the instances
and their videos in the Instance View, “Joy” and “Sadness” are often
considered important visual features with positive influences. Addi-
tionally, E1 found their co-occurrences may be due to the presence of
intense and rich facial expressions in the videos. These expressions
generally involve the movement of the related facial action units in
“Joy” and “Sadness”. For example, after E1 clicked on the instances,
he noticed all the face parts (i.e., nose, eyes, brows, mouth, and chin)
of the corresponding glyphs (Fig. 6B) in the Projection View has thick
strokes, which suggests intense movements. When he watched the
original videos, the bounding boxes of “Joy” and “Sadness” always
popped up as important visual features. Hovering on the boxes and
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Fig. 6. “Joy + Sadness” co-occurrence patterns. A: “Joy + Sadness” is
a frequent and important feature template in the table. B: The raw video
information and corresponding glyphs of three representative instances
of the “Joy + Sadness” template.

examining the facial expressions and their explanations, E1 concluded
that the extreme facial expressions triggered the movement of the action
units in “Joy” and “Sadness”, and the model seemed to capture these
important visual facial expressions.

Conclusions. During exploration, E1 discovered that MulT cannot
handle double negations very well, though it is a state-of-the-art model.
He commented augmenting double negation examples or preprocessing
them into positive forms can further improve the performance.

6.2 Case Two: EF-LSTM

In this case, the expert E2 explored the popular RNN-based model,
EF-LSTM [22], for multimodal sentiment analysis using the CMU-
MOSEI dataset. The dataset setup and feature processing are the same
as Case One (Sect. 6.1). EF-LSTM concatenates textual, acoustic, and
visual features at each word. Then, it uses an LSTM model to derive
the input representations for the predictions. The details of the model
are provided in the supplementary material.

Through interactive explorations with M2Lens, E2 was surprised to
find that EF-LSTM does not learn sentiment in text. Also, he noticed
that the acoustic modality has the largest influence on the sentiment
prediction results among the three modalities, and the voice pitch
always plays a negative role in the sentiment predictions.

6.2.1 No Meaningful Information Learned in Text

Global summary (R2) After selecting the valid set and EF-LSTM,
E2 started with the Summary View to gain an overview of the impacts
of the modalities (Fig. 3B). By comparing the range of dots in the three
bee swarm plots, he was surprised to find that acoustic modality is
the most influential modality, then comes the language modality. In
addition, the language modality always exhibits a positive impact on
the sentiment. These findings are quite counter-intuitive. Thus, E2 first
explored text-related interactions by tracking the thickest links from
the language modality to the third layer. He noticed that “complement”
group shows at the top, and the text plays a leading role within the
group. Then, he brushed the whole group to see textual feature patterns.

Subset exploration (R3, R4) The strange thing is that no textual
templates and text glyphs were spotted in the Template View and the
Projection View, respectively. E2 suspected that the model does not
learn any important language features (i.e., words) for sentiment analy-
sis. Then, he referred to the Instance View to validate his doubt.

AA

B

C

Fig. 7. Negative influences of voice pitch. A: “pitch” is the most frequent
acoustic template, and it always has a negative impact (as indicated by
the dots in the bee swarm plot). B: The selected group of instances with
large pitch values (as indicated by the large radius of the blue sectors).
C: Two high-error cases where the model captures the turning points of
the pitch but wrongly associates pitch with negative influences.

It’s run by a fantastic team of professors; they are always available for you.
(Umm) this movie was excellent.

1

2

Instance exploration (R1, R3, R4) When exploring the instances in
the Instance View, E2 found that the model fails to recognize potentially-
important words for sentiment analysis, such as “fantastic” (in line #1),
“excellent” (in line #2). None of them is highlighted with colors in the
Instance Detail. E2 also noticed every word of the sentences in the
feature table has evenly low positive importance scores (less than 0.1).
This explains why the language modality always has positive influences
and further proves that the model does not capture the sentiment in text.

6.2.2 Negative Influences of Voice Pitch
Global summary (R1, R2) E2 paid attention to the most influential
modality (i.e., the acoustic modality) in the Summary View (Fig. 3B),
where a negatively-skewed distribution of dots was shown. In addition,
he noticed that within the“conflict” group, the acoustic modality plays
a negative role (blue bars) throughout the time. Thus, E2 brushed this
group to investigate the negative influence of acoustic features.

Subset exploration (R1, R3, R4) E2 found the “pitch” is the most
frequent acoustic template in the Template View (Fig. 7A). Moreover,
E2 noticed that pitch always has a negative impact given the negatively-
skewed distribution of dots in the third column. After clicking the row,
he switched to the Projection View to see the pitch value distribution
(Fig. 7B). He discovered that the acoustic glyphs are spread along a
left-slanting line, where the radius of the blue sectors (i.e., pitch values)
generally increases from left to right. Then, he selected a group of
instances with the large pitch at the right corner for further inspection.

Instance exploration (R1, R3, R4) By browsing the instances and
videos in the Instance Summary (Fig. 7C), E2 observed that pitch
is always the top important acoustic feature and is associated with
negative influences. Although some important pitch variation signals in
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the videos are captured by the model, he believed that the model is not
reliable since it always regards the pitch as a strong negative sentiment
indicator and he found many counterexamples. To name a few, in two
cases (Fig. 7C), he found pitch ranks the first with negative importance
in the feature table. And he noticed that some backgrounds of the
orange lines (i.e., pitch values) are colored light blue (i.e., negative). By
examining the offsets of all the orange lines, he thought the highlighted
ones seem to be the turning points of pitch values. He speculated that
the model captures the important signals in audio. He further checked
the original video and verified the observations. However, the speakers
sound high-spirited, and the pitch should reflect positive sentiment.

Conclusions. Through the case study, E2 found that EF-LSTM
seems not able to capture the sentiment in text. He reasoned that the
simple early feature fusion may lead to textual information loss. He
speculated that some more advanced model designs (e.g., transformer)
can be incorporated into the model to facilitate text understanding.
Given the negative impacts of voice pitch, E2 thought that removing
the pitch feature may increase the model accuracy.

6.3 Expert Interviews

We collected the feedback from the one-on-one interviews with the
aforementioned three domain experts (E1, E2, E3). None of them
have tried the system before the interviews. We first introduced the
background and system designs. Then we asked the experts to use
M2Lens to diagnose two state-of-the-art models (i.e., multimodal trans-
former and EF-LSTM) on the CMU-MOSEI dataset. After a 50-minute
exploration, we collected their feedback about the system workflow,
system designs, application scenarios, and improvement suggestions.

System workflow. All the experts confirmed the effectiveness of the
system workflow of M2Lens in providing explanations for multimodal
sentiment analysis models. They mentioned that they usually rely on
performance metrics or instance-level feature importance measures for
model evaluation, which does not provide many details and is unable to
support an in-depth analysis. Our system supplements them with global-
and subset-level explanations, which facilitates a comprehensive and
systematic understanding of model behaviors. E1 and E3 praised that
the interaction summaries (i.e., dominance, complement, and conflict)
are impressive and very useful for revealing both the model behaviors
and the multimodal data characteristics. E3 mentioned if he finds some
modalities are influential in predicting sentiment using M2Lens, he
can consider reducing the number of modalities without losing much
performance when deploying the model to low-end devices. E1 added
that the feature templates help generalize the model error patterns. E2
summarized that the system assisted him in discovering interesting
insights into the models. For example, he was surprised that EF-LSTM
seems to not capture any sentiment information from the text.

Visual designs and interactions. Overall, the experts confirmed
that the visualizations are useful and still easy to understand, and
interactions are smooth. The Summary View is most favored by the
experts for a quick overview of the learned intra- and inter-modal
interactions. The designs of Projection View are also appreciated by the
experts. E3 really liked the heatmap for showing the error and feature
importance patterns. E1 thought the face glyphs are very intuitive,
and the interactions such as lasso and zoom are really helpful for the
exploration of a large amount of data. Moreover, he valued the video
playback and the realtime highlighting of face parts for raw video
browsing. Nevertheless, E1 and E2 said that the Instance View is a
little complex, visualizing lots of information. Additionally, the experts
responded that it took them a while (about 20 minutes) to fully grasp
all the components and functions in the system.

Improvements. The experts offered constructive suggestions for
improvements. E3 requested a bookmark function to save user inter-
action histories (e.g., selection of templates) for further review. E1
suggested that the system can add a comparison module for exploring
and comparing different models at the same time. During the explo-
ration, E2 and E3 observed that some large model errors are caused by
dataset errors (e.g., a mismatch between the video and transcript). They
recommended that the system should support correcting dataset errors.

7 DISCUSSION

Here, we discuss M2Lens regarding generalizability, scalability, multi-
level and multi-faceted exploratory analysis, and learning curve.

Generalizability. M2Lens was developed to visualize and explain
multimodal models for sentiment analysis. We demonstrated our system
through case studies on two state-of-the-art models using the CMU-
MOSEI dataset. However, M2Lens can also be used to explain other
multimodal models on different sentiment datasets based on the feature
importance computed by post-hoc explainability techniques. Further-
more, the interaction types (i.e., dominance, complement, and conflict)
and feature templates can summarize multimodal features from the
global and subset levels in other multimodal language analyses. For
example, for the multimodal emotion recognition task, the system can
explain what are the dominant modalities when “angry” is predicted.
The feature templates can summarize the frequent and influential fea-
ture sets for “angry” and facilitate the exploration of model behaviors.

Scalability. Our approach also has some scalability issues, which
come from the automated algorithms and visual designs. The bottleneck
of our computational cost is the feature attribution methods. We use
SHAP to compute the feature importance. It took about 25 minutes to
process 2,000 instances of the CMU-MOSEI validation set. To speed
up the process, we can employ techniques such as feature clustering,
data sampling, and parallel computing. For the visual designs, the
visual clutter can occur in the Projection View, where multimodal
instances are encoded with different glyphs. To reduce this issue,
M2Lens enables filtering instances according to the feature importance
and sentiment predictions. Moreover, users can use semantic zoom to
focus on instances of interest, which alleviates the overlapping issues.

Multi-level and multi-faceted exploratory analysis. M2Lens pro-
vides multi-level and multi-faceted explanations on the behaviors of
multimodal models for sentiment analysis. A general workflow for
our target users (e.g., model users and researchers) starts with the Sum-
mary View, where the global summary of the influences of individual
modalities and their interplay is displayed. Then, users can specify
an interaction type. Its influential and frequent multimodal features
will be summarized in the Template View and Projection View. Users
can examine their error and importance patterns, which helps prioritize
their efforts for the instance exploration in the Instance View.

Learning curve. According to the feedback from the expert inter-
views, the experts pointed out that it took them some time (usually
a 20-min trial) before smoothly using our system since our system
contains a few components. However, they said that M2Lens is very
helpful for them to explore the models. Moreover, they have derived
comprehensive insights into the model behaviors and are eager to use
M2Lens for model understanding and diagnosis in the future.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented M2Lens, a visual analytics system to help
users understand and diagnose multimodal models for sentiment analy-
sis. M2Lens provides multi-level explanations on model behaviors from
language, acoustic, and visual modalities. It features an augmented
tree-like layout for a global understanding of learned intra- and inter-
modal interactions. Moreover, the feature templates and visualization
glyphs of multimodal features facilitate the exploration of a group of
frequent and influential feature sets. Through two case studies and
expert interviews, we demonstrated M2Lens can provide deep insights
into the state-of-art multimodal models for sentiment analysis.

In the future, we plan to enhance our system usability by adding
functions, such as model comparison, data error correction. Also, we
would like to extend our system to other multimodal applications (e.g.,
emotion recognition). Further, more domain experts can be invited to
further validate the usability and effectiveness of M2Lens with more
datasets and models for sentiment analysis.
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