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Figure 1: The interface of Visualization Engine. (a) Function view is a series of dots at top represent the functions. (b) The graph is
shown in the Graph view and the nodes are basic blocks. (c) Weight threshold is used to set the weight threshold (d) The functions
with specific names are listed in Function List.

ABSTRACT

Soft errors have become one of the major concerns for HPC applica-
tions, as those errors can result in seriously corrupted outcomes, such
as silent data corruptions (SDCs). Prior studies on error resilience
have studied the robustness of HPC applications. However, it is still
difficult for program developers to identify potential vulnerability to
soft errors. In this paper, we present Visilence, a novel visualization
tool to visually analyze error vulnerability based on the control-flow
graph generated from HPC applications. Visilence efficiently visual-
izes the affected program states under injected errors and presents
the visual analysis of the most vulnerable parts of an application.
We demonstrate the effectiveness of Visilence through a case study.
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1 INTRODUCTION

As the HPC systems keep scaling up, the chance of the systems
encountering soft errors also increases [5]. Though many soft er-
rors can be detected and corrected by hardware-level mechanisms,
some errors escape these mechanisms and further propagate to the
application-level [2], which can lead to a failure of applications and
even serious outcomes such as silent data corruptions (SDCs). Prior
studies [6, 7] have shown that the impact of errors is not uniformly
distributed, and the likelihood of causing SDC is also different. Soft
errors affect different states of an application. It indicates that un-
derstanding how an error occurring on a particular program state
affects the outcome of an application, which may help developers
add extra protection in development, e.g., duplication of variables or
instructions.

However, resilience analysis for HPC applications is often known
as a “Black Box” analysis: the user can estimate the resilience
characteristics via fault injection [3] to an application, which usu-
ally lacks explainability on a case-by-case basis. For example,
SpotSDC [4] visualizes error propagation in programs through fault
injection methods, whereas the targeted vulnerable code regions
and functions in SpotSDC require the user’s expertise, which is
not appropriate for general developers. The conventional preceding
studies rarely analyze error propagation and resilience through vi-
sualization methods and symbols turning inflexible HPC programs
trace data into graphical representations and providing interactive



analysis modes.
We propose a novel control-flow based visualization tool to ex-

plore the error resilience of HPC applications. Furthermore, we
showcase the error propagation pattern along with the basic blocks
of an example faulty run of CoMD and demonstrate the usage of
Visilence to identify the critical sections of the applications.

2 Visilence
We roughly categorize the introduction of Visilence into two cat-
egories: overall workflow of Visilence and generation pipeline of
visualization.

2.1 Overall workflow of Visilence
At a high level, Visilence needs three levels of abstractions: (a) a
model that can keep the static and dynamic program states, (b) a
format to allow systematic analysis of the program states, and (c)
a visualization tool that offers a friendly interface to identify the
code regions that are sensitive to the errors for the users. We define
Loop Sensitive graph (LSG) generated from the dynamic traces and
Critical Vector Graph (CVG) generated based on the accumulation
of multiple LSGs. The workflow of Visilence proceeds as follows:
(i), it takes an HPC program as input and conducts a statistic fault
injection campaign on the application to generate a set of dynamic
execution traces; (ii), it creates LSGs/CVGs based on the obtained
dynamic traces of the application, and (iii) it implements a novel
visualization system that takes the LSGs/CVGs as the data source
and provides a fine-grained representation of error propagation and
resilience characteristic for the application.

2.2 Generation Pipeline of Visualization
Visilence has two modules, namely the function selecting module
and the graph module, to support the collaborative design of basic-
block like visualization. The pipeline is shown in Fig. 2. The
visualization system has two separated stages for resilience graph
generation, namely the layout simulation and the anomaly mapping.
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Figure 2: The workflow of our visualization system

We implement a user-friendly interface to visualize error propaga-
tion and functions interactively (see Fig. 1). The interface consists
of four parts:

• Function View (a) is a sequence of functions which are rep-
resented by dots. These functions are placed in the order of
where they are defined. A green dot means it matches exactly
like the golden run‘s, or it would be rendered in red when
they are different in weights. The triangle on the sequence is a
marker labeling the function where the fault is injected.

• Graph View (b) shows the Loop Sensitive Graph/Critical Vec-
tor graph. The vertices of the graph are basic blocks and the
head (in yellow) and tail (in red) nodes are the entry and exit of
the function respectively. The edges represent the connections
between two basic blocks in the CFG, and the weights are
the absolute values of the different executed times between
the faulty traces and golden runs. The edge is gray when its
weight is zero and is red otherwise. There are two options
above: Global view and Filter.

• Weight Threshold (c) is used to filter the edges. When we
slide the bar in Weight Threshold, the value would be adjusted,
and the edges with smaller weights below the threshold would
be assigned into gray.

• Function List (d) lists all the functions in the program with
specific name in the same order in Function View. We can
click on it to select the function to be shown in Graph View.

3 CASE STUDY

When soft errors occur in the running process of the program, this
error may affect the subsequent control flow. Our tool can intuitively
indicate how this error propagates.

Fig. 1 shows the error propagation pattern along with the basic
blocks of an example faulty run of CoMD [1]. The series of dots
at the top represents all the 157 functions of CoMD. The green dot
indicates that the LSG generated for that function is consistent with
the golden run, while the red dot indicates that they are inconsistent.
The “marker of fault injection” indicates that the fault was injected
in that function.

Fig. 1 presents an example of LSG for the function
’setVcm omp fn.o’ in benchmark program CoMD. The function
starts from the ‘head’ basic block ′0x407 f 80′ and ends in the ‘tail’
basic block 0x4080a8, in total 12 basic blocks. The weights are the
difference in executed times between the golden run and the faulty
run. The biggest difference in this function is 351 on the edges from
basic block 0x408000 to 0x408030. The path from the basic block
′0x408000′ to ′0x408030′ maps to the source code of ‘initAtoms.c’
at Lines 126 to 129 inside a for loop. We observed that 64 functions
were affected by the injected fault.

4 CONCLUSION

We proposed Visilence, a control-flow graph based visualization
tool for error resilience analysis, which provides human analysts
with detailed facets of error propagation for further decision making.
Visilence addresses the issue of understanding how the applications
are affected by the errors via a graph-based abstraction to represent
the affected program states and the reason for the error propagation
across different error scenarios.
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