

Nonuniform Timeslicing of Dynamic Graphs Based on Visual Complexity

Yong Wang¹, Daniel Archambault², Hammad Haleem¹, Yanhong Wu³, Torsten Moeller⁴, Huamin Qu¹

http://yong-wang.org/proj/nu_timeslicing.html

Background

 A dynamic graph is a sequence of graph snapshots defined over an edge stream

 Uniform timeslicing divides time into equal intervals and is usually used in dynamic graph visualization for convenience and simplicity

Background

- For dynamic graph visualization, uniform timeslicing:
 - Does not take the data into account

- Can generate cluttered timeslices with bursting edges, and empty timeslices with few edges

Research Problem

• How can we make full use of the limited number of timeslices to show more meaningful information?

 How can we provide users with better perception of the dynamic graph (especially the periods with bursting edges)?

Nonuniform Timeslicing

Goal: create timeslices of similar visual complexity

A simple definition of visual complexity: number of edges

Nonuniform Timeslicing

 Solution: nonuniform timeslicing based on histogram equalization, a technique for enhancing image contrast

New Histogram

Old image

Old Histogram

https://www.tutorialspoint.com/dip/histogram_equalization.htm

Nonuniform Timeslicing

• Image contrast enhancement vs. dynamic graph visualization

	Image Contrast Enhancement	Dynamic Graph Visualization
Problems	Low color contrast	Visual clutter in some timeslices
Causes Solutions	Color convergence in certain color range	Edge bursting in certain time range
	Re-distribute color bins for equal distribution	How ???

Nonuniform Timeslicing For Dynamic Graphs

Adapt histogram equalization to redistribute edge counts across
time

For the *i*-th bin in the original time series, histogram equalization will transform it to the following bin:

$$s_i = \lfloor (T-1) \sum_{j=0}^{l} p(j) \rfloor$$

Where $p(i) = |E_i|/|E|$, T is the total time range, E_i is the number of edge events in the *i*-th bin and E is the total number of edge events.

Nonuniform Timeslicing For Dynamic Graphs

- Visual hint for time information
 - An explicit time legend for each graph snapshot

Nonuniform Timeslicing For Dynamic Graphs

10

Evaluation – Qualitative Case Study

Rugby dataset --- uniform timeslicing

- Intervals1, 2, 3, 9: sparse edges
- Intervals 11, 12: dense edges, hindering users from checking details

Evaluation – Qualitative Case Study

Rugby dataset --- nonuniform timeslicing

- Intervals 8: sparse interactions (summer break from may to August)
- Intervals 9-12: dense interactions (the season begins)
- Reveal more details: "sc" interacted most with different teams along time

Summary and Discussion

- Compared with uniform timeslicing, the proposed nonuniform timeslicing can achieve
 - Balance visual complexity across intervals
 - Reveal more details in the intervals of bursting edges
- Limitations

- Scalability issues: visual clutter can be reduced but cannot be always removed

- Application: more suitable for dynamic graphs with edge event variations

Nonuniform Timeslicing of Dynamic Graphs Based on Visual Complexity

Yong Wang¹, Daniel Archambault², Hammad Haleem¹, Yanhong Wu³, Torsten Moeller⁴, Huamin Qu¹

http://yong-wang.org/proj/nu_timeslicing.html

