DeepDrawing: A Deep Learning Approach to Graph Drawing

Yong Wang^{1.} Zhihua Jin^{1,4} Qianwen Wang¹ Weiwei Cui^{2.} Tengfei Ma^{3.} Huamin Qu¹ <u>http://yong-wang.org/proj/deepDrawing.html</u>

Motivation

Graph drawing has been extensively studied to facilitate the exploration, analysis and presentation of networks!

Motivation

Graph drawing has been extensively studied to facilitate the exploration, analysis and presentation of networks!

- However, users often need to find a desirable graph layout through trial-and-error:
 - Tune different algorithm-specific parameters
 - Compare different drawing results

Motivation

Graph drawing has been extensively studied to facilitate the exploration, analysis and presentation of networks!

However, users often need to find a desirable graph layout through trial-and-error:

It is time-consuming and not user-friendly, especially for non-expert users!

Research Question

- Deep learning techniques have shown a powerful capability of modelling the training data and further making predictions in many applications
- Can we model graph drawing as a learning and prediction problem and further generate drawings for input graphs directly?

Overall Idea

- > Model Architecture
- Loss Function Design
- > Training Datasets

> Model Architecture

- Existing deep learning techniques are mainly applied to the Euclidean data (e.g., images, videos and texts), instead of graphs

- Recent research on Graph Neural Network mainly targets at node classification and link prediction on **a single graph**, which is much different from graph drawing

- > Model Architecture
- Loss Function Design
 - How to evaluate whether a drawing for an input graph is "correct" or not?

- > Model Architecture
- Loss Function Design
- > Training Datasets
 - There are no publicly-available high-quality datasets for graph drawing

DeepDrawing

- Model Architecture
- Model Input
- Loss Function Design
- Dataset Generation

Major Considerations

- The majority of graph neural networks mainly focus on the learning and prediction tasks for a single graph
- However, a recent study^[1] has shown that RNNs are capable of modelling the structure information of multiple graphs

[1] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec. Graphrnn: a deep generative model for graphs. In *Proceedings of the 35th International Conference on Machine Learning*, 2018.

We propose a bi-directional graph-LSTM based model for graph drawing.

- Architecture Details:
 - BFS-ordering of graph nodes

- Architecture Details:
 - BFS-ordering of graph nodes
 - Fake edges (dotted yellow arrow) and real edges (green arrow)

- > Architecture Details:
 - BFS-ordering of graph nodes
 - Fake edges and real edges
 - Bi-directional

- Architecture Details:
 - BFS-ordering of graph nodes
 - Fake edges and real edges
 - Bi-directional

DeepDrawing – Model Input

Node Feature Vector

Natural choice: node embedding

They mainly target at single graphs and are not able <u>to be generalized</u> <u>to multiple graphs^[2]!</u>

 A fixed-length adjacency vector encoding the connection information between the current node and its prior nodes.

[2] M. Heimann and D. Koutra. On generalizing neural node embedding methods to multi-network problems. In *KDD MLG Workshop*, 2017.

DeepDrawing – Model Input

- Node Ordering
 - Random ordering

The possible orderings for an input graph can be very large!

• BFS ordering

- Avoid exhaustively going through all possible node permutations

- There is <u>an upper bound</u> for the possible connection between the current node and its prior furthest nodes along the BFS sequence^[1]!

[1] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec. Graphrnn: a deep generative model for graphs. In *Proceedings of the 35th International Conference on Machine Learning*, 2018.

DeepDrawing – Model Input

DeepDrawing – Loss Function Design

- Design Considerations
 - Make the predicted drawings as <u>similar</u> as possible to the drawings of ground-truth
 - The function should be invariant to translation, rotation and scaling

DeepDrawing – Loss Function Design

Procrustes Statistic

$$R^{2} = 1 - \frac{(tr(C^{T}\bar{C}\bar{C}^{T}C)^{1/2})^{2}}{tr(C^{T}C)tr(\bar{C}^{T}\bar{C})}$$

- \circ It is transformation-invariant
- It is between 0 and 1
- Zero means the drawings are exactly the same; while one means they are totally different

DeepDrawing – Dataset Generation

- We generate:
 - Graph data: grid graphs, star graphs, clustered general graphs
 - Graph drawing data: grid layout, star layout, ForceAtlas2, PivotMDS
 We manually tune the parameters of the drawing algorithms

Evaluations

- > We extensively evaluated the proposed approach:
 - Qualitative and quantitative evaluations
 - Comparison with the graph truth drawings and those by the baseline model (a 4-layer Bi-LSTM model)

Evaluations – Qualitative Evaluation

Evaluations – Quantitative Evaluation

Procrustes Statistic-based similarity: Our approach is significantly better than the baseline model

Evaluations – Quantitative Evaluation

- Running Speed
 - CPU: Both our approach and the baseline model is faster than the traditional graph drawing methods
 - GPU: Our approach is slower than the baseline model on GPU, though it has 80% less parameters

Evaluations – Quantitative Evaluation

Training Convergence Comparison Our approach can converge faster than the 4 layer Bi-LSTM in terms of #Epochs.

Limitations

- Lack Interpretability
- Our current evaluations mainly focus on small graphs with 20 to 50 nodes
- The performance of DeepDrawing has a dependence on the input node ordering and the structure similarity with the training graphs

Take Home Message

- We propose a graph-LSTM based approach to graph drawing and investigate its effectiveness on small graphs
- It is worth further exploration in terms of good interpretability and better prediction performance on large graphs
- More details: code, video and slides are(or will be) accessible at: <u>http://yong-wang.org/proj/deepDrawing.html</u>

DeepDrawing: A Deep Learning Approach to Graph Drawing

Yong Wang^{1.} Zhihua Jin^{1,4.} Qianwen Wang¹ Weiwei Cui^{2.} Tengfei Ma^{3.} Huamin Qu¹ http://yong-wang.org/proj/deepDrawing.html

