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A B S T R A C T

A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary
significantly in color and shape due to cell type differences, staining technique variations and the adhesion
between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of un-
supervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts
the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC
region by touching-cell splitting based on concavity analysis. The second module further uses the coarse seg-
mentation result of the first module as automatic labels to actively train a support vector machine (SVM)
classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more
accurate segmentation result. To improve its segmentation accuracy, median color features representing the
topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are in-
troduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the
proposed approach with two blood cell image datasets obtained under various imaging and staining conditions.
The experiment results show that our approach has a superior performance of accuracy and time cost on both
datasets.

1. Introduction

White blood cells (WBCs or leukocytes), which are the principal
components of immune cells, play a vital role in the fight against in-
fections. In clinical practice, the identification and counting of WBCs in
blood smear are often used for diagnosing many diseases such as in-
fections, inflammation, malignancy, leukemia, etc. In the past, the ex-
amination of blood smears is a highly complex, tedious, and time-
consuming manual task. Nowadays, with the rapid development of
computer-aided methods, an automatic cell analysis system can support
faster and more reproducible image analysis than manual analysis (Xing
and Yang, 2016). Automatic cell analysis system generally includes four
steps: image acquisition, cell segmentation, feature extraction and
classification. Cell segmentation is often considered as the most im-
portant and critical step in the process, as it directly affects the accuracy
and time complexity of subsequent steps.

A typical blood smear image consists of WBCs, red blood cells (RBCs
or erythrocytes), platelets and the background. The goal of cell

segmentation is to extract WBCs from such complicated scenes and
provide essential information for the feature extraction step. By using
the salient color of nuclei, WBC detection has been well solved by
various cell segmentation methods (Ko et al., 2009; Ko et al., 2011;
Zheng et al., 2014). An example of WBC detection result is shown in
Fig. 1. However, fast and robust segmentation of WBCs remains chal-
lenging. The reasons are three-fold. First, the original blood smear
images are significantly different in color due to different staining
techniques and illumination conditions. Second, variations may exist
even within the same smear image because of different types of WBCs.
For example, WBCs can usually be classified into five types (i.e., lym-
phocytes, monocytes, neutrophils, eosinophils and basophils) and dif-
ferent types of WBCs stained by the same technique display various
colors. As shown in Fig. 2, the colors of different sub-images vary sig-
nificantly due to both inter- and intra-image variations of the original
blood smear images. Thirdly, WBCs frequently adhere to RBCs, leading
to irregular shapes of WBCs, and the boundaries between the touching
cells are blurred. Therefore, an accurate WBC segmentation is a
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challenging task because of the above three reasons. In this paper, we
propose a self-supervised learning approach to achieve fast and robust
WBC segmentation and focus on segmenting the cell region of interest
(CROI), i.e., the whole WBC region including both nucleus and cyto-
plasm, from RBCs and the background which is denoted as the non-cell
region of interest (non-CROI).

Various automated cell segmentation methods have been devel-
oped. Most of them are learning-based methods, which can generally be
classified as supervised and unsupervised methods. The supervised
methods, formulate the problem of segmentation as a multi-class clas-
sification. For example, each pixel can be classified into CROI and non-
CROI. Classifiers such as Bayesian (Prinyakupt and Pluempitiwiriyawej,
2015), K-nearest neighbor (Kong et al., 2011), neural network (Yi et al.,
2005), support vector machine (SVM) (Song et al., 2013; Ruberto et al.,
2016), and random forest (Saidi et al., 2016), etc., have been used,
where the classifiers are usually trained on manually-labeled training

images. Their effectiveness highly depends on the imaging conditions
and whether the extracted features can distinguish the CROI from the
non-CROI (Song et al., 2013). Thus, some researchers try to extract
more effective color features to mitigate this issue, for example, use
L*a*b* color space (Sertel et al., 2009) or the most discriminant color
space (MDC) (Kong et al., 2011), adopt scale-invariant feature trans-
form (SIFT) descriptor (Song et al., 2013), and integrate texture fea-
tures (Farhan et al., 2013a). Apart from using the traditional classifiers,
deep convolutional networks (Ronneberger et al., 2015) have also re-
cently been applied in cell image segmentation. These methods based
on deep convolutional networks usually can get better results than the
traditional classifier-based learning methods. However, all the above-
mentioned supervised methods need a large number of training sam-
ples, which are usually manually labeled but hard to gained for bio-
medical images. Besides, the supervised approaches usually do not
work well when there are significant differences between the training

Fig. 1. WBC detection result by using an earlier work (Zheng et al., 2014).

Fig. 2. Different types of WBC under various imaging and staining conditions. (a) Lymphocytes. (b) Monocytes. (c) Neutrophils. (d) Eosinophils. (e) Basophils. Top row: rapidly-stained
images. Bottom row: traditional Wright-stained images. The ground truth segmentation results manually sketched by expert hematologists is shown at the bottom right corner of each
image.
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and test samples, though they can produce good cell segmentation
when the color distributions of both CROI and non-CROI are similar to
those of training images.

The unsupervised learning methods, such as thresholding (Huang
et al., 2012), K-means (Zhang et al., 2014), fuzzy c-means (FCM)
(Theera-Umpon, 2005), and mean-shift (Zhi et al., 2015), etc., where
manually labeled training data is not necessary, have stronger adapt-
ability to various conditions than the supervised learning methods.
They are effective when the color of the entire cell is distinct from
others. However, they do not perform well when the CROI has sig-
nificant color variations. Since a WBC has similar color with RBCs and
often adheres to the RBCs, lots of parameters need to be adjusted case-
by-case to avoid over- and under-segmentation. To overcome this pro-
blem, some clustering-based cell segmentation methods first separate
the background from the foreground (including the CROI and RBCs)
and then remove RBCs by shape-based methods, according to the fact
that cells usually have a convex shape. There are mainly three types of
shape-based methods: region-based Watershed (Xiaowei et al., 2006;
Yang et al., 2006; Arslan et al., 2014), basic morphological operations
(Dorini et al., 2007) and contour-based concavity analysis (Kumar
et al., 2006; Yang et al., 2008; Farhan et al., 2013b). The concavity
analysis methods, which are less sensitive to cell size than the former
two methods, have drawn more and more attention. However, gray/
color intensity information is not considered in the shape-based
methods and they may probably fail when the cell shape is highly ir-
regular.

In addition to the learning-based methods, there is another kind of
powerful cell segmentation methods, called deformable models (Yang
et al., 2005; Yan et al., 2008; Ko et al., 2011; Rezatofighi and Soltanian-
Zadeh, 2011). These methods find the boundaries of the CROI by in-
troducing contour evolution based on the computed internal and ex-
ternal forces. However, they suffer from the overlap and fuzzy bound-
aries between the WBC and RBCs and highly depends on the initial
contour. If the initial contour is far from the real one, the final contour
will probably converge to the boundaries of RBCs. Many deformable
models try to accurately estimate the initial contours in a manner that is
similar to that of traditional supervised (Yang et al., 2005) and un-
supervised (Yan et al., 2008; Ko et al., 2011; Rezatofighi and Soltanian-
Zadeh, 2011) learning methods. However, they will still have the same
problems as other supervised and unsupervised algorithms do. More-
over, even if the initial contour is well positioned, the final contour may
converge to the nucleus or RBCs when the boundary of the CROI is
blurred or the contract between the CROI and non-CROI is low.

The major contribution of this paper is introducing a self-supervised
learning approach to achieve fast and robust segmentation of white
blood cells. The self-supervised learning approach consists of two
modules (i.e., unsupervised initial segmentation and supervised seg-
mentation refinement), making use of the advantages of both su-
pervised and unsupervised methods. The rest paper is organized as
follows. An overview of the proposed self-supervised learning approach
is given in Section 2. The unsupervised initial segmentation and the
supervised segmentation refinement, which are the two modules of the
proposed method, are described in detail in Sections 3 and 4, respec-
tively. Section 5 shows the experimental results. Then the discussion is
presented in Section 6. The paper ends with our conclusions in Section
7.

2. Overview

The proposed cell segmentation approach is based on self-su-
pervised learning, as shown in Fig. 3. It consists of two modules: un-
supervised initial segmentation and supervised segmentation refine-
ment.

In the first module, the background separation obtains the overall
foreground region (a single CROI or a touching-cell clump) by using K-
means clustering to remove the uniform background area. Then, we use

a touching-cell splitting method to split the touching-cell clump roughly
into the CROI and RBCs base on shape-based concavity analysis. The
touching-cell splitting method is a two-step process: find all concave
points on the contour of the touching-cell clump, then iteratively split
the clump by connecting concave point-pairs with a straight line. Since
no color or edge information is taken into account in splitting the
touching-cell clump, the segmentation result is usually not good enough
and false positive and negative segmentation results often exist, as
shown in Fig. 3, which need to be refined by the second module.

The second module consists of three steps: feature extraction,
sample selection and supervised classification.

In a supervised learning approach, each training sample contains an
input feature vector and a label. Once the feature vector and label are
known, a classifier can be trained actively. Therefore, the first step of
the second module is feature extraction, whose goal is to feed pixel-wise
feature vectors as the input to the classifier. Taking the local topological
structure and fuzzy boundary problem into consideration, we introduce
a 9-dimension descriptive feature vector, containing RGB color values,
HSV median color values within a local neighborhood and HSV WEEO
(weak edge enhancement operator) values.

If the features and labels of all pixels in the image were used as the
training samples, it would take much time to train the classifier. To
accelerate the classifier training process, an efficient cluster sampling
strategy is proposed to sample only a small portion of representative
pixels for the subsequent learning process.

The third step of the second module is supervised classification,
which includes two phases: training and test. In the training phase, an
SVM classifier is actively trained on the sample pixels that are auto-
matically selected by the proposed cluster sampling strategy. In the test
phase, the trained SVM classifier is used to classify each pixel of the
image into the CROI or the non-CROI and achieve a more accurate
segmentation result.

The proposed self-supervised learning approach combines su-
pervised and unsupervised methods and outperforms them. Compared
to the supervised learning methods, the proposed self-supervised
learning approach is fully automatic with no human involvement and is
more robust to color variations across images, as SVM classifier is
trained on each image. Compared to the unsupervised learning
methods, it can provide more accurate segmentation result while fewer
parameters are needed to be tuned.

3. Unsupervised initial segmentation

The unsupervised initial segmentation consists of two steps: clus-
tering-based background separation and touching-cell splitting using
concavity analysis, where the first step removes the majority of the
background and the second step cuts out the RBCs adhering to the
CROI. The final output of this module is a coarse CROI segmentation
result, which is used for training the classifier in the subsequent su-
pervised segmentation refinement.

3.1. Background separation

The images we deal with here are sub-images cropped by an earlier
work (Zheng et al., 2014). Each sub-image contains only a single CROI,
the possible RBCs and other background. The CROI usually has color
variations resulting from the imaging and staining conditions and the
colors of the CROI and RBCs are often quite similar. Therefore, clus-
tering methods using a fixed number of clusters are prone to produce
over-and under-segmentation results. Different from the touching-cell
clump (CROI/RBCs) with various colors, the background of the sub-
images has higher brightness and relatively uniform color, making it
easier to remove the background. Therefore, we adopt the classical K-
means clustering to separate the background and retain the CROI re-
gion.

K-means clustering needs a pre-defined cluster number, K. Since
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there are at least four clusters in the cell image, which corresponds to
the nucleus, cytoplasm, RBC and the background, K should be bigger
than four to prevent the algorithm from segmenting blurred boundaries
of the CROI into the background. The selection of the cluster number K
will be discussed in Section 5.2. The background separation is done in
the following four steps (One example is shown in Fig. 4).

(1) Convert the image (Fig. 4(a)) from RGB color space to HSI space
and over-segment it into uniform regions Ri by K-means clustering
(e.g., Fig. 4(b)).

(2) Remove the over-segmented regions located at the border of the
image. Note that most of the background including some RBC areas
have been removed after this step (see Fig. 4(c)). All the over-seg-
mented regions that are removed after this step are labeled as Bi.

(3) Remove the regions that have very similar color with the back-
ground. Since Bi may contain both background and RBCs areas, the

region Bmax that has the maximum intensity value in Bi must be a
background area. Therefore, the regions that have similar color
with Bmax can be regarded as the background and thus removed.
The color similarity is defined as follows:

= −D R R C C( , )i j i j (1)

where Ci is the average HSI vector of Ri and ║ ║ indicates the
Euclidean distance. According to the experiment, if D(Ri,
Bmax) < 10, Ri can be empirically considered as a background area
and should be removed, shown in Fig. 4(d).

(4) Merge the remaining regions (which are connected and usually
located at the center of image) into the foreground, where the CROI
are included.

Fig. 3. Overview of our self-supervised learning approach.

Fig. 4. Illustration of background separation. (a) A sub-image. (b) The over-segmentation result using K-means clustering. (c) The result of removing the regions at the border of the sub-
image. (d) The result of further removing the regions that have similar color with the background. The removed regions in (c) and (d) are shaded.
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3.2. Touching-cell splitting

The foreground extracted in the previous step may be a single CROI
or a touching-cell clump that contains RBCs. However, due to the color
similarity and spatial proximity between the CROI and RBCs, it is still
very difficult to segment the touching-cell clump into the CROI and
RBCs accurately. To automatically determine whether it is a single
CROI or a clump and further decide how to split the clump, we propose
a touching-cell splitting technique. Considering that cells are always
convex, we make use of shape-based concavity analysis to check if there
is a clump and further split the touching-cell clump. The touching-cell
splitting technique consists of two steps: concave point detection and
concave point matching.

3.2.1. Concave point detection
Let = =C p{ }i i

n
1 be the closed contour of the foreground, which is

encoded using Freeman’s chain code (Freeman, 1961), where pi is the
ith pixel on the contour, n is the number of the contour pixels and i=1,
2, ..., n. The encoded chain can be described as =a{ }i i

n
1, where

= ∈+a p p a, [0,7]i i i i1 . To accurately estimate the slope of pi, we use the
chain code sum si of the adjacent 2k+1 points where the middle point
is pi (k is set to 3). Fig. 5(d) shows the curve of chain code sum of a
touching-cell clump (Fig. 5(a)). To obtain the concave points, compute
the chain code difference di, which means the difference of the chain

code sum between si+k and si−k. The curve of chain code difference is
shown in Fig. 5(e). According to the experiment, if di≤− 4, the point
pi can be regarded as a concave point. Then, all the concave regions on
the contour can be detected in this way (see Fig. 5(b)). The most likely
concave points are found as the midpoints of corresponding concave
regions (see Fig. 5(c)).

3.2.2. Concave point matching
Building off the concave point detection, we propose an iterative

concave points matching technique to split a touching-cell clump if it
exists, and further obtain a coarse CROI. At each iterative step, the two
concave points with the local maximum arc-chord ratio (ACR) are
matched as a pair, and the touching-cell clump is split into two by
connecting the concave point-pair with a straight line. The ACR can be
calculated as

=γ L
L

e
(2)

where Le is the effective length of a curve (marked in magenta in
Fig. 6(a)), and L is the length of the straight line between the curve's
two endpoints (marked in green in Fig. 6(a)). As shown in Fig. 6, the
RBCs that adhere to the CROI are separated from the clump step by
step. The details of concave points matching algorithm can be found in
Algorithm 1.

Fig. 5. Illustration of concave point detection. (a) The contour of a touching-cell clump. (b) The concave regions detected by the proposed method. (c) The concave points obtained by the
proposed method. (d) The chain code sum of (a), which is calculated from the point marked by an arrow and in a counterclockwise direction. (e) The chain code difference of (a). The
concave regions are highlighted in blue in (b) and (e) and the concave points are marked in red in (c), (d) and (e). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 7 gives some example results of the touching-cell splitting.
However, since only the shape feature is considered and no color
or edge information is taken into account, over- and under-

segmentation may still exist after touching-cell splitting. This
will be further improved by the following supervised segmentation
module.

Fig. 6. Illustration of splitting a touching-cell clump using the iterative concave points matching. (a) Illustration of arc and chord. (b-h) The procedures of separating the RBCs that adhere
to the CROI from the cell clump, where one cell is separated from the clump at each step.
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4. Supervised segmentation refinement

Our self-supervised learning approach will train an SVM classifier
and further classify each pixel into either the CROI or the non-CROI. As
mentioned in Section 2, a supervised learning approach needs training
samples where each sample contains an input feature vector and a label.
The training samples are usually manually labeled. In contrast, our self-
supervised learning approach makes the labeling of training samples
totally automated by using the result of unsupervised initial segmen-
tation.

Through background separation and touching-cell splitting, a coarse
CROI is extracted from the input image and will be used as the labels to
train the classifier. In the following subsections, we will discuss how to
extract good features and select representative training samples to
guarantee both the accuracy and efficiency of the segmentation.

4.1. Feature extraction

Extracting distinguishable features from various images is key to
achieve optimal performance of the supervised learning approach. We
consider both the color features and the topological structure in-
formation (Kontschieder et al., 2011) of each pixel, and further include
a type of new features to improve the segmentation performance for
handling the blurred cell boundaries.

Color feature is one of the most informative features in describing
the cell image and RGB color values, CRGB=(R, G, B), are often used to
describe the image pixel. However, according to our experimental re-
sult, holes and non-continuous regions may always exist in the CROI if
only the color information of each pixel is used. This is probably be-
cause each pixel is considered independently and the local topological
structure (Kontschieder et al., 2011) is lost.

To incorporate the topological structure of the local neighborhood
of each pixel, we calculate the median color value of all the surrounding
pixels in a W×W neighborhood window (Fig. 8(e)), MCHSI=(MCH,
MCS, MCI), which is calculated in HSI color space. By combining the
neighboring median color feature and the pixel color feature, a more
continuous CROI region can be obtained.

In addition, the blurred boundaries of WBCs, where the intensity
contrast between the CROI and the non-CROI may be rather low,
usually lead to inaccurate segmentation of WBCs (either under-seg-
mentation or over-segmentation). To handle this issue, we introduce a
new type of features for each pixel based on a weak edge enhancement
operator (WEEO), which can enhance the weak boundaries between the
CROI and the non-CROI and support better segmentation. Inspired by a
prior work (Arbeláez et al., 2011), the proposed WEEO is also based on

a circular template with alterable directions. The template is centered
at O and divided into two half-discs by a diameter of D pixels at angle θ,
as shown in Fig. 8(i). The detailed steps of extracting WEEO-based
features for each pixel are described as follows:

(1) Compute the oriented gradient between the histograms (say, g and
h) of the two half-discs at angle θ, which is defined as below:

∑ ∑=
⎧
⎨
⎩

⎡

⎣
⎢ −

⎤

⎦
⎥

⎫
⎬
⎭= =

G g h d g h d g h d g h( , ) ( , )/ ( , ) ( , )θ
i

l

i i
j

l

j j i i
1 1 (3)

where i and j are the bin indices and l indicates the total number of
bins in the histogram. d(gi, hi) is calculated in the following way:

=
−
+

d g h
g h
g h

( , )
( )

i i
i i

i i

2

(4)

where both g and h are normalized histograms. The oriented gra-
dient mainly encodes the differences between the two half-discs
from the perspective of histograms.

(2) Calculate the oriented variance of the intensity for each half-disc, as
defined below:

∑= −
∈

( )V
S

I I1
θ m

m i Ω
i Ω,

2

m
m

(5)

where m∈ {u, l} denotes the upper or lower half-disc, Ωm is the set
of pixels falling into the same half-disc m, Sm represents the total
number of pixels in Ωm, Ii and IΩm indicate the intensity of pixel i
and the mean intensity of the pixels in Ωm, respectively. The closer
the intensities of the pixels in Ωm are to the mean intensity of the
half-disc, the smaller the value Vθ,m is, and vice versa.

(3) Calculate the degree of the uniform distribution of intensities in
both half-discs, as defined below:

∏= ⎛

⎝
⎜ + ⎞

⎠
⎟V V1 exp ( 1)θ

m
θ m,

(6)

The more consistent the intensity of each half-disc, the larger the Vθ
value is, and vice versa. The value of Vθ varies between 0 and 1.

(4) Calculate the product of the variance weight Vθ and the oriented
gradient Gθ over eight directions in [0,π]. The WEEO value is the
maximum product across all the directions, as defined below:

= ×WEEO G Vmax{ }
θ

θ θ (7)

Fig. 7. Examples of touching-cell clump splitting. Top row: the original images. Bottom row: results of splitting the touching-cell clump, where the background removed in background
separation is shown in black and the RBCs removed in touching-cell clump splitting are shaded.
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Compared with the contour detector introduced in (Arbeláez et al.,
2011), the intensity variance is used as the weight (as shown in Eq. (7))
in the proposed WEEO. It is able to enhance the gradient of weak
boundaries between CROI and non-CROI and the WEEO-based features
support better segmentation for weak boundaries, as shown in the area
marked in red dotted ellipse in Fig. 8. In this paper, we calculate the
WEEO-based features in HSI color space for each pixel, i.e.,
WEEOHSI=(WEEOH, WEEOS, WEEOI).

By now, a 9-dimensional feature vector x=[CRGB, MCHSI,
WEEOHSI], which takes into account the color features, topological
structures and enhancement of blurred boundaries, is obtained. Fig. 8
shows an example of these features. There are three parameters to be
determined in the feature extraction procedure, namely, the size of the
neighboring window W, the diameter D, and the bin number l. For
convenience, we simply set D=W. The choice of these parameters will
be discussed in Section 5.2.

4.2. Sample selection

It will take a lot of time to train a classifier if all the image pixels are
used for training. To accelerate the classifier training process, we in-
troduce an efficient cluster sampling strategy, where only a small
number of representative training samples are chosen to train the
classifier. These pixel samples are selected from the over-segmented
regions obtained by K-means clustering in background separation and the
over-segmented regions are already labeled as two types of regions (i.e.,
the CROI and the non-CROI) by the unsupervised initial segmentation.

The sample size of each over-segmented region is proportional to its
area size. More specifically, for each over-segmented region Ri(i=1, 2,
..., H, H is the total number of over-segmented regions), the re-
presentative pixels are sampled as follows:

(1) Scan each row of pixels in Ri and create two arrays, + +L N[ ]i i and
− −L N[ ]i i , to store the locations of pixels in the CROI and the non-

CROI respectively, where +Ni and −Ni are the total number of the
CROI and the non-CROI pixels in Ri.

(2) Calculate the sample sizes +Si and −Si (i.e., the number of sampled
CROI and non-CROI pixels in Ri) using the following formula:

= × ∈ + −S S N N b0.5 , { , }i
b

i
b b (8)

where N+ and N− are the total numbers of the CROI and the non-
CROI pixels in the whole sub-image, respectively. S is the pre-de-
fined total number of sample pixels and we sample the same
number of pixels (i.e. 0.5S) from the CROI and the non-CROI.

(3) Compute the sampling intervals for the CROI and the non-CROI in
all the over-segmented regions in this way:

= ∈ + −I N S b0.5 , { , }b b (9)

(4) Sample +Si pixels in + +L N[ ]i i with an interval of I+ pixels and −Si
pixels in − −L N[ ]i i with an interval of I− pixels. Note we will sample
at least one pixel in each over-segmented region.

The selection of the total sampling size S and the corresponding

Fig. 8. Visual representation of color features. (a) The original image, (b)-(d) are the R, G, B component of color features respectively. (e) A W×W (W=7) neighboring window. (f-h)
are the H, S, I component of median color feature (W=7) respectively. (i) The circular template of WEEO. (j-l) are the H, S, I component of features calculated by WEEO (D=7)
respectively. The weak boundary is marked in red dotted ellipse. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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impact of adjusting S will be discussed in Section 5.2.

4.3. Supervised classification using SVM

Support vector machines (SVMs) have been widely used in many
applications scenarios (Cristianini and John, 2000), especially in sol-
ving the classification and pattern recognition problem with a small
number of training samples. Considering its excellent capability in
classification, we also choose SVM as the classifier in our self-su-
pervised learning approach. The SVMs try to find the hyperplane that
maximizes the margin between two classes and its core idea can be
briefly summarized as follows (Vapnik, 1998):

Suppose the training set is =x y{ , }i i i
S

1, where xi is the input feature
vector, yi= ± 1 is the binary labels (indicating the CROI and the non-
CROI), S is the size of training samples and i=1, 2, ...S. The decision
function of SVM is

∑= ⎛

⎝
⎜ + ⎞

⎠
⎟

=

x xf x α y K b( ) sgn * ( , ) *
i

S

i i i
1 (10)

where α *i and b* are the Lagrange multiplier and bias respectively that
will be learned from the training dataset. K(xi, x) is a kernel function,
which defines the similarity between the input feature vector x and the
support vector xi.

To find the optimal parameters αi, we need to maximize the
Lagrangian

∑ ∑ ∑= −
= = =

x xα α α α y y KW( ) 1
2

( , )
S

i
i

S

j

S

i j i j i j
i 1 1 1 (11)

under the following constraints

∑ = ≤ ≤
=

α y α C0, 0
i

S

i i i
1 (12)

where C is a penalty parameter to be specified by the user. A larger C
corresponds to assigning a higher penalty to misclassification.

To apply SVM in our self-supervised learning approach, we also

need to define the kernel function K(xi, x). The general kernel function
choices for SVM include the linear kernel, the polynomial kernel, the
radial basis kernel and the sigmoid kernel. In this paper, the radial basis
function (RBF) kernel is chosen in the proposed approach and defined
as:

= − −x x x xK γ( , ) exp( )i i
2 (13)

where γ is a regularization parameter that can be tuned for optimal
performance of the classifier. The selections of parameters C and γ will
be discussed in Section 5.2.

Fig. 9 shows some examples with and without using the supervised
classification: the middle row shows the result without using the su-
pervised classification (i.e., the result of unsupervised initial segmen-
tation), while the bottom row shows the segmentation results of su-
pervised segmentation refinement. It can be clearly seen that over- and
under-segmentation problems are solved by the supervised classifica-
tion.

It should be noted that the training pixel samples fed into the
classifier may contain some wrong labeled samples. However, the
proposed self-supervised learning approach can still achieve a good
segmentation accuracy. The main reason is that our well-designed un-
supervised initial segmentation can guarantee that the wrong labeled
samples are significantly less than the correctly labeled samples and
most of the training samples have correct labels. The impact of these
few wrong labeled pixels can be mitigated by the dominant samples
with correct labels. Also, the proposed clustering-based sampling
strategy supports a better selection of representative sample pixels and
the novel pixel features can enable effective discrimination between the
CROI and the non-CROI.

5. Results

We did extensive experiments on two image datasets to evaluate the
proposed self-supervised learning approach. We tested its robustness to
parameter variations, assessed the effectiveness of the proposed fea-
tures and sampling strategy, and further compared our approach with

Fig. 9. Comparison of segmentation results with and without using the proposed supervised classification. Top row: the original images. Middle row: results after unsupervised initial
segmentation. Bottom row: results after supervised segmentation refinement. The removed regions in the sub-images of middle row and bottom are shaded.

X. Zheng et al. Micron 107 (2018) 55–71

63



the existing representative cell segmentation methods.

5.1. Materials and evaluation methods

All the experiments of this paper are based on two image datasets
captured under different imaging and staining conditions by two
medical microscopy companies. Dataset 1 was obtained from Jiangxi
Tecom Science Corporation, China. It contains three hundred
120×120 sub-images of single WBC (176 neutrophils, 22 eosinophils,
1 basophil, 48 monocytes, and 53 lymphocytes), which are cropped
from 80 source images by an earlier work (Zheng et al., 2014). The
source images of Dataset 1 were taken by a Motic Moticam Pro 252A
optical microscope camera with a N800-D motorized auto-focus mi-
croscope, and the smears were processed with a newly-developed he-
matology reagent for rapid WBC staining (Zheng et al., 2014). The size
of each image is 2048×1536 and the color depth is 24 bits. Dataset 2
consists of one hundred 300× 300 color images (30 neutrophils, 12
eosinophils, 3 basophils, 18 monocytes and 37 lymphocytes), which
were collected from the CellaVision blog.1 To evaluate the accuracy of
the proposed approach and other cell segmentation methods, each
image has a ground truth segmentation result indicating the CROI
(white) and the non-CROI (black), which were manually sketched by
expert hematologists. To benefit the research community of medical
image segmentation, we have made both datasets publically available.2

Following prior work on cell segmentation, we used four popular
segmentation error measures: one contour-based measure called relative
distance error (RDE) (Yang-Mao et al., 2008) and three region-based
measures including over-segmentation rate (OR), under-segmentation rate
(UR), overall error rate (ER) (Yi et al., 2005; Chan et al., 2010; Pan et al.,
2012; Zhang et al., 2014). OR, UR and ER are described as follows:

= +OR Q U D( )p p p (14)

= +UR U U D( )p p p (15)

= +ER Q U D( )p p p (16)

where Qp is the number of pixels that should be included in the seg-
mentation result but are not, Up is the number of pixels that should be
excluded from the segmentation result but actually included, and Dp is
the number of pixels that should be included in the segmentation result
and are also actually included.

RDE is popularly used in the evaluation of object segmentation. Let
e e e, , ... n1 2 e and t t t, , ... n1 2 t be the pixels on E and T respectively (where E
and T are respectively the extracted contour pixels and the target
contour pixels) and ne and nt the number of pixels on E and T. RDE is
thus defined as:
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where = =d dist e t j nmin{ ( , ) 1, 2, ..., }e i j ti , =d mint j =dist e t i{ ( , )i j
n1, 2, ..., }e , and =dist e t e t( , ) ,i j i j represents the Euclidean distance

between ei and tj.
The smaller the values of the four segmentation errors, the better

the segmentation performance. The time costs of each segmentation
methods are also evaluated.

5.2. Evaluation of robustness to parameter variations

In this subsection, we show that the proposed approach is robust to
parameter variations by presenting the effects of different parameters
on the final segmentation results. There are several parameters that
need to be determined in the proposed self-supervised learning

approach: (1) the number of clusters K in Background Separation, (2) the
total sampling size S in Sampling Selection; (3) the size, W, of the
neighboring window W×W in Feature Extraction; (4) the bin number l
in Feature Extraction; and (5) the kernel type and related parameters of
SVM in the Supervised Classification.

Fig. 10(a–d) show the effects of the first four key parameters in this
study. It can be seen that, when a single parameter changes its value
within a certain range while the other model parameters are set as the
empirically-chosen constant values, which will be introduced below,
the segmentation performance remains nearly constant. Similarly, as
shown in Fig. 10(e–f), the four segmentation error measures do not
change significantly when the parameters γ and C of SVM vary sig-
nificantly. It is clear that the proposed approach shows strong robust-
ness to parameter variations. Taking both segmentation accuracy and
calculation speed into account, we have empirically chosen the fol-
lowing parameter values for all the other experiments in this paper: (1)
K=8; (2) S=max(w, h) where w and h are width and height of the
image, respectively; (3) W=7; (4) l=8; and (5) γ=1, C=100.

5.3. Evaluation of feature effectiveness

To verify the effectiveness of the proposed color features, we com-
pared the final segmentation results using three sets of color features:
the RGB color values CRGB, the feature set [CRGB, MCHSI], and the
proposed color feature set [CRGB, MCHSI, WEEOHSI], which are further
denoted as “C”, “C+MC” and “C+MC+WEEO”, respectively.

As shown in Fig. 11(f–g), “C+MC” produces a more accurate
segmentation result than that of “C” on both datasets, which can be
seen from the decreased OR, ER and RDE. For example, there is a de-
crease of 10.8%, 4.6%, 1.5% in OR, ER and RDE respectively on Dataset
1 and a decrease of 20.1%, 9.2%, 4.3% on Dataset 2. The result shows
that the added median color features in HSI color space can increase the
robustness of the proposed approach to the holes and non-continuous
regions, which can be seen from the comparison between Fig. 11(c) and
(d). Moreover, “C+MC+WEEO” further reduces the segmentation
errors compared with “C”. For instance, there is 6.8% decrease in ER on
Dataset 1 and 14.5% decrease on Dataset 2. It confirms the effectiveness
of the proposed features in handling blurred boundaries and an ex-
ample for this is shown in the second row of Fig. 11(a–e), where the
blurred boundary is marked in a red dotted ellipse.

5.4. Evaluation of sampling effectiveness

In this subsection, we assess the effectiveness of the proposed
clustering sampling (CS), through comparing it with the generally-used
uniform sampling (US). Due to the limited space and the consistency
between the four segmentation error metrics, we only evaluate their
segmentation errors using RDE. As shown in Fig. 12(g), when the total
sampling size is the same, the segmentation errors in RDE using CS are
significantly reduced compared to that using US, with only a slightly
increased time cost (11%–26%). It demonstrates that CS can effectively
sample more representative training sample pixels and thus achieve
better segmentation results than US. Also, it can be seen from Fig. 12
that the final segmentation result using CS (Fig. 12(f)) is comparable to
the ground truth (Fig. 12(d)), although the training samples may con-
tain noise (see Fig. 12(c)).

5.5. Comparison of segmentation performance

To further evaluate the overall segmentation performance of our
self-supervised learning approach, we have compared it with four ex-
isting cell segmentation methods. Three of them are unsupervised
methods, namely, fuzzy c-means (FCM) (Theera-Umpon, 2005), canny-
based gradient vector flow snake (CGS) (Ko et al., 2011), simulated
visual attention (SVA) (Pan et al., 2012). The fourth method is a con-
volutional neural network approach named U-Net (Ronneberger et al.,

1 http://blog.cellavision.com.
2 https://github.com/zxaoyou/segmentation_WBC.
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2015), which is a supervised learning method. We run 10-fold cross-
validation experiments to evaluate the performance of U-Net. We
equally divided all the images (which are resized to 300× 300) of both
datasets into 10 folders and further used images of one folder as the test
data and the images of the remaining folders as the training data. Tables
1 and 2 show the average segmentation errors. We tried various para-
meters to train a U-Net model with the best segmentation performance.
It was optimized by using the momentum-based stochastic gradient
descent. The U-Net model with the least training loss was gained with a
learning rate of 0.06, a weight decay of 0.995 and a momentum of 0.2.
The total iterations for the training are set as 40,000 (1000 epochs for
40 iterations/epoch). All the experiments were done on a desktop with
3.46 GHz Intel i5-4590 processors and 8GB RAM. To make a fair com-
parison of the time cost between different algorithms, the U-Net model
is tested by using only CPU.

We compared the four existing segmentation methods with our

approach on both datasets. Figs. 13 and 14 provide some segmentation
examples on the two datasets. Tables 1 and 2 give the segmentation
errors and time costs on Datasets 1 and 2, respectively. In addition, to
explore their segmentation accuracy for different types of cells, we also
present the segmentation performance corresponding to each type of
WBCs, as shown in Fig. 15.

In general, our segmentation approach outperforms the others in
terms of segmentation accuracy. On Dataset 1, our approach gives
better results in most of the measures, as shown in Table 1 (the best
results are highlighted in bold). Though our method is higher in UR
than SVA (4.27% vs. 3.34%), our segmentation approach achieves
better overall segmentation results in all the other measures. Particu-
larly, our approach has the lowest OR, ER and RDE (0.69%, 5.24%,
1.16) compared with FCM (0.85%, 12.41%, 2.44), CGS (4.87%, 8.59%,
1.85) SVA (3.32%, 7.09%, 1.68), and U-Net (0.83%, 5.39%, 1.25). As
for the segmentation results on Dataset 2, Table 2 demonstrates that our
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Fig. 10. The effect of the parameters used in the proposed approach. (a) The number of clusters K in background separation. (b) The total sampling size S in sample selection. =L w hmax( , ),
where w and h are the width and height of the input sub-image. (c) The sizeW and (d) the bin number l in feature extraction. (e) Parameter γ of RBF kernel in SVM. (f) Parameter C of SVM.
To display all the four segmentation error measures and the time cost intuitively in a single figure, we replace RDE with RDE/50, and the time units are ten seconds, the same for the
subsequent figures.
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approach has the lowest segmentation errors in all the four measures,
exhibiting a much better segmentation performance with 49.7%,
55.3%, 58.4% and 46.7% decrease in OR, UR, ER and RDE respectively
over the second best method (i.e., U-Net) in each metric. When com-
paring the running time, our method performs best among all the four
approaches on both datasets.

The FCM method functions well on Dataset 1, especially with OR
measure, which is only 0.85 and close to our method. However, FCM
performs poorly in the rest of the measures. When the sub-images
contain WBCs with uniform intensity and no other cells (e.g., RBCs)
appear (Fig. 13(c)), FCM has a good segmentation performance. But
when many RBCs exist in the sub-images or the color is unevenly dis-
tributed, as shown in Fig. 14(c), FCM is not able to remove RBCs and
leads to over-segmentation for WBCs with blurred boundaries.

By replacing the gradient map with canny edge map, the contour-
based CGS method improves the accuracy of contour detection for the
cells with fuzzy boundaries. However, the generated contour by CGS
may converge to the inner textures (e.g. the nuclei in the third row of
Fig. 13(d)) or the outer textures (e.g., the non-CROI in the fourth row of
Fig. 13(d) and the RBCs shown in the fifth row of Fig. 14(d)), when the
boundaries of WBCs are blurry and the inner and outer textures have
higher gradient. Besides, CGS is the most time-consuming method
among all the four methods, as shown in Tables 1 and 2. For example,
the average time cost of CGS on Dataset 2 is more than 50 s (56800ms).

The classification-based SVA introduced by (Pan et al., 2012) is an

online-classification-based method by sampling high gradient pixels
around the nuclei. It is robust to color variation, but it may lead to over-
segmentation, for example, the existence of holes inside cells (e.g.
Fig. 14(e)), because of its improper sample labels.

Though the SVM classifiers in SVA and our approach are both
trained automatically, ours outperforms SVA, which can be seen in both
the segmentation examples (Figs. 13 and 14) and the quantitative ac-
curacy comparisons (Tables 1 and 2). One major reason for this is that
our approach can automatically select training samples that are more
representative. The carefully-designed unsupervised module can obtain
an acceptable initial segmentation result and our cluster sampling well
preserves the important details of the CROI and non-CROI in the
training samples. The other major reason is that the proposed color
features can better describe the topological structure and deal with
weak boundaries than the simple RGB color features used in SVA.
Therefore, our approach can produce more continuous CROI and
handle the weak boundaries of the CROI much better than SVA.

U-Net has achieved precise segmentations on many biomedical
images, but needs only a few images for training. Though it is not
originally designed for WBC segmentation, U-Net still yields good
segmentation results on our datasets. However, our approach slightly
outperforms U-Net in OR, ER and RDE, as shown in Tables 1 and 2. One
possible reason for this is that the color of different images appears
quite different and the color of CROI may be similar to that of a non-
CROI across images or even within the same image, due to the variation

Fig. 11. Comparison of segmentation results using different sets of features. (a) The original sub-images. (b) The ground truth. (c) Results using “C”. (d) Results using “C+MC”. (e)
Results using “C+MC+WEEO”. Top row: an image from Dataset 1 and segmentation results using different sets of color features. Bottom row: an image from Dataset 2 and seg-
mentation results. The blurred boundary is marked in red dotted ellipse. (f) Comparison results using Dataset 1. (g) Comparison results using Dataset 2. The error bar of (f) and (g)
indicates the 95% confidence interval. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Comparison of segmentation results using different sampling strategies. (a) The original image. (b) Uniform sampling (US). (c) Clustering sampling (CS). (d) The Ground truth.
(e) The result of US. (f) The result of CS. Red points denote true positive training samples, green points represent true negative ones, magenta points are wrong positive ones and blue
points are wrong negative ones. (g) Comparison of segmentation results using different sampling strategies on Dataset 2. =L w hmax( , ), where w and h are the width and height of the
input sub-image. The blurred boundary region of (d-f) is marked in red dotted ellipse. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Comparison of the segmentation results on Dataset 1. (The smaller the value of OR, UR,
ER and RDE, the better the segmentation performance. The best results are highlighted in
bold).

OR(%) UR(%) ER(%) RDE Time(ms)

FCM 0.85 9.94 12.41 2.44 273
CGS 4.87 3.37 8.59 1.85 880
SVA 3.32 3.34 7.09 1.68 139
U-Net 0.83 4.17 5.39 1.25 233a

Ours 0.69 4.27 5.24 1.16 90

a The time cost of U-Net is tested when using only CPU for a fair comparison, the same
below.

Table 2
Comparison of the segmentation results on Dataset 2.

OR(%) UR(%) ER(%) RDE Time(ms)

FCM 12.27 21.33 55.42 15.07 2260
CGS 5.17 7.31 14.05 6.74 56800
SVA 13.76 3.71 18.87 7.04 774
U-Net 3.72 2.93 7.64 3.36 1055
Ours 1.87 1.31 3.18 1.79 639

The best results are highlighted in bold.
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of staining techniques and illumination conditions. For example, the
color of some parts of the background is quite like that of the neutrophil
cytoplasm, leading to under-segmentation (the first row of Fig. 13(f)).
Similarly, there is no significant color difference between the eosinophil
cytoplasm and the background, leading to over-segmentation (the
fourth row of Fig. 14(f)). U-Net may not be able to learn these subtle
differences effectively. In addition, the performance of deep learning
neural network highly depends on parameter tuning and finding the
optimal parameters is a time-consuming task. In contrast, the proposed
self-supervised learning approach can more precisely segment the
WBCs by training and testing on the same input image. It is also easy to
tune the parameters and more robust to parameter variations. For the
time cost, when U-Net is running on only CPU for a fair comparison, it
shows no advantages in time cost over the proposed approach. But it
should be noted that the time cost of U-Net will be significantly reduced
when using GPU.

6. Discussion

This paper introduces a self-supervised learning approach to the
segmentation of white blood cells, where both unsupervised and su-
pervised learning methods are involved. Its excellent segmentation
performance and efficiency are also demonstrated through the ex-
tensive experiments above. However, there are still three major aspects
that need further discussion.

6.1. Sub-images vs. original large image

In this paper, we only deal with sub-image that includes one single

WBC and is cropped from the original image with a large size. This is
different from some prior work (Pan et al., 2012; Zhi et al., 2015), that
is designed for directly doing cell segmentation on the original large
image. Two factors are considered here. First, there are many mature
WBC detection algorithms, which can guarantee the detection accuracy
and be used for obtaining sub-images from the original large cell
images. An earlier work (Zheng et al., 2014) is chosen in this paper to
crop sub-images from peripheral blood cell images, but it can also be
replaced by other cell detection algorithms. Second, the overall pro-
cessing speed of cell image segmentation is highly improved by working
on the sub-images. As shown in Fig. 1, WBCs are scattered in the ori-
ginal large image and the majority of the image is the background.
When focusing on only the region of interest, much time is saved.
Therefore, this paper is designed for the cell segmentation of sub-
images and it can be easily extended to cell segmentation of the original
large images by combining one cell detection algorithm with the pro-
posed self-supervised learning approach.

6.2. Training every time vs. training once for all

Due to the cell type differences, unstable staining and varying il-
lumination, different sub-images vary in the intensity and color even
within the same original cell image. Therefore, it is necessary to train
one individual SVM classifier for each sub-image. Our experiment has
shown that the time cost of all the training and test is still acceptable
and better than the existing methods. However, the proposed approach
can be easily adapted to further improve its efficiency by obtaining
training samples from all the sub-images and training only once instead
of training every time for every sub-image. This is especially useful for

Fig. 13. Example segmentation results on Dataset 1. From top to bottom: neutrophils, lymphocytes, monocytes, eosinophils and basophils. (a) The original sub-images containing
different types of WBCs. (b) The ground truth contours. (c) Results of FCM. (d) Results of CGS. (e) Results of SVA. (f) Results of U-Net. (g) Results of our self-supervised learning approach.
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Fig. 14. Example segmentation results on Dataset 2. From top to bottom: neutrophils, lymphocytes, monocytes, eosinophils and basophils. (a) The original sub-images containing
different types of WBCs. (b) The ground truth contours. (c) Results of FCM. (d) Results of CGS. (e) Results of SVA. (f) Results of U-Net. (g) Results of our self-supervised learning approach.
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the situation when the sub-images have consistent intensity and color.
When the intensity and color are inconsistent across the sub-images,
there is a trade-off between segmentation accuracy and better efficiency
to train every time for each sub-image or train once for all.

6.3. Extension to other application scenarios

The experiment of this paper is mainly focusing on the segmentation
of WBC in peripheral blood smear images. However, our self-supervised
learning approach can also be extended to the segmentation of cells in
other types of biomedical images. For example, by using one cell de-
tection algorithm to generate the sub-images, our approach can po-
tentially be applied in the cell segmentation of cervical smear images
(Yang-Mao et al., 2008) and bone marrow smear images. More testing
on these types of datasets is left as future work.

7. Conclusions

We present a self-supervised learning approach to improve the ac-
curacy and adaptability of white blood cell segmentation. It consists of
two major modules: the unsupervised initial segmentation generates a
rough segmentation result and the supervised segmentation refinement
uses these initial segmentation results to train an SVM classifier and
achieve much-improved segmentation result. In addition, three im-
portant strategies, which further improve the segmentation accuracy
and efficiency, are also proposed and integrated in our approach: (1) a
fast touching-cell splitting algorithm, (2) an effective cluster sampling
strategy, and (3) a novel color feature vector that includes median color
feature to incorporate topological structure and the feature using a
novel weak edge enhancement operator (WEEO) to improve the seg-
mentation of fuzzy boundaries. The touching-cell splitting algorithm
improves the adaptability of our approach, making it work for images
under various imaging and staining conditions. The cluster sampling
strategy can effectively select a portion of representative training
samples, which guarantees both the segmentation accuracy and effi-
ciency. The proposed color features represent more inherent properties
of each sample pixel, thus are robust to non-continuous regions and
blurred boundaries in the images.

Our experiments have demonstrated the effectiveness and ad-
vantages of the proposed self-supervised learning approach in white
blood cell segmentation. It is robust to inter- and intra-image variations
and is not very sensitive to parameter variation. The proposed features
and sampling strategy can further improve the segmentation accuracy
using the SVM-based classification. Compared with existing re-
presentative methods, our approach also shows much better segmen-
tation performance.

In future work, we plan to further test the performance of the pro-
posed approach on more datasets in various conditions. Also, we would
like to apply the proposed self-supervised learning approach in an au-
tomated cell analysis system to achieve better identification and
counting of WBCs.

Acknowledgements

This work was supported in part by the National Natural Science
Foundation of China (61603003), the Natural Science key Research
Project for higher education Institutions of Anhui Province
(KJ2016A439, KJ2016A438), Anhui Provincial Natural Science
Foundation of China (1608085MF144) and the Foundation of
University Research and Innovation Platform Team for Intelligent
Perception and Computing of Anhui Province. The authors would like
to thank Beifang Yi for his great help in the revision of the manuscript,
and Chen Pan for his constructive suggestions on this project. The au-
thors also thank Jiangxi Tecom Science Corporation in China and
CellaVision Company in Sweden for sharing their image datasets.

References

Arbeláez, P., Maire, M., Fowlkes, C., Malik, J., 2011. Contour detection and hierarchical
image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916.

Arslan, S., Ozyurek, E., Gunduz-Demir, C., 2014. A color and shape based algorithm for
segmentation of white blood cells in peripheral blood and bone marrow images.
Cytometry 85, 480–490.

Chan, Y.K., Tsai, M.H., Huang, D.C., Zheng, Z.H., Hung, K.D., 2010. Leukocyte nucleus
segmentation and nucleus lobe counting. BMC Bioinf. 11, 558.

Cristianini, N., John, S.-T., 2000. An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press.

Dorini, L.B., Minetto, R., Leite, N.J., 2007. White blood cell segmentation using mor-
phological operators and scale-space analysis. Computer Graphics and Image
Processing, 2007. XX Brazilian Symposium on. IEEE 294–304.

Farhan, M., Ruusuvuori, P., Emmenlauer, M., Rämö, P., Dehio, C., Yli-Harja, O., 2013a.
Multi-scale Gaussian representation and outline-learning based cell image segmen-
tation. BMC Bioinf. 14, 1–14.

Farhan, M., Yli-Harja, O., Niemistö, A., 2013b. A novel method for splitting clumps of
convex objects incorporating image intensity and using rectangular window-based
concavity point-pair search. Pattern Recogn. 46, 741–751.

Freeman, H., 1961. On the encoding of arbitrary geometric configurations. IRE Trans.
Electron. Comput. EC-10, 260–268.

Huang, D.C., Hung, K.D., Chan, Y.K., 2012. A computer assisted method for leukocyte
nucleus segmentation and recognition in blood smear images. J. Syst. Software 85,
2104–2118.

Ko, B.C., Seo, M.S., Nam, J.Y., 2009. Microscopic cell nuclei segmentation based on
adaptive attention window. J. Digit. Imaging 22, 259.

Ko, B.C., Gim, J.W., Nam, J.Y., 2011. Automatic white blood cell segmentation using
stepwise merging rules and gradient vector flow snake. Micron 42, 695–705.

Kong, H., Gurcan, M., Belkacemboussaid, K., 2011. Partitioning histopathological images:
an integrated framework for supervised color-Texture segmentation and cell splitting.
IEEE Trans. Med. Imaging 30, 1661–1677.

Kontschieder, P., Bulo, S.R., Bischof, H., Pelillo, M., 2011. Structured class-labels in
random forests for semantic image labelling. International Conference on Computer
Vision 2190–2197.

Kumar, S., Ong, S.H., Ranganath, S., Ong, T.C., Chew, F.T., 2006. A rule-based approach
for robust clump splitting. Pattern Recogn. 39, 1088–1098.

Pan, C., Dong, S.P., Yoon, S., Yang, J.C., 2012. Leukocyte image segmentation using si-
mulated visual attention. Expert Syst. Appl. 39, 7479–7494.

Prinyakupt, J., Pluempitiwiriyawej, C., 2015. Segmentation of white blood cells and
comparison of cell morphology by linear and naïve Bayes classifiers. Biomed. Eng.
Online 14, 1–19.

Rezatofighi, S.H., Soltanian-Zadeh, H., 2011. Automatic recognition of five types of white
blood cells in peripheral blood. Comput. Med. Imaging Graphics 35, 333–343.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: convolutional networks for biome-
dical image segmentation. International Conference on Medical Image Computing
and Computer-Assisted Intervention 234–241.

Ruberto, C.D., Loddo, A., Putzu, L., 2016. A leucocytes count system from blood smear
images: segmentation and counting of white blood cells based on learning by sam-
pling. Mach. Vision Appl. 27 (8), 1151–1160.

Saidi, M., Bechar, M.E.A., Settouti, N., Chikh, M.A., 2016. Application of pixel selection in
pixel-based classification for automatic white blood cell segmentation. The
Mediterranean Conference on Pattern Recognition and Artificial Intelligence 31–38.

Sertel, O., Kong, J., Catalyurek, U.V., Lozanski, G., Saltz, J.H., Gurcan, M.N., 2009.
Histopathological image analysis using model-based intermediate representations
and color texture: follicular lymphoma grading. J. Signal Process. Syst. 55, 169–183.

Song, Y., Cai, W., Huang, H., Wang, Y., Feng, D.D., Chen, M., 2013. Region-based pro-
gressive localization of cell nuclei in microscopic images with data adaptive mod-
eling. BMC Bioinf. 14, 1–16.

Theera-Umpon, N., 2005. White blood cell segmentation and classification in microscopic
bone marrow images. International Conference on Fuzzy Systems and Knowledge
Discovery 787–796.

Vapnik, V.N., 1998. Statistical Learning Theory. Wiley, New York.
Xiaowei, C., Xiaobo, Z., Wong, S.T.C., 2006. Automated segmentation, classification, and

tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans. Biomed. Eng. 53,
762–766.

Xing, F., Yang, L., 2016. Robust nucleus/cell detection and segmentation in digital pa-
thology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9,
234–263.

Yan, P., Zhou, X., Shah, M., Wong, S.T.C., 2008. Automatic segmentation of high-
throughput RNAi fluorescent cellular images. IEEE Trans. Inf. Technol. Biomed. 12,
109–117.

Yang, L., Meer, P., Foran, D.J., 2005. Unsupervised segmentation based on robust esti-
mation and color active contour models. IEEE Trans. Inf. Technol. Biomed. 9,
475–486.

Yang, X., Li, H., Zhou, X., 2006. Nuclei segmentation using marker-controlled watershed,
tracking using mean-shift, and kalman filter in time-lapse microscopy. IEEE Trans.
Circuits Syst. 53, 2405–2414.

Yang, L., Tuzel, O., Meer, P., Foran, D.J., 2008. Automatic image analysis of histo-
pathology specimens using concave vertex graph. International Conference on
Medical Image Computing & Computer-assisted Intervention 833–841.

Yang-Mao, S.F., Chan, Y.K., Chu, Y.P., 2008. Edge enhancement nucleus and cytoplast
contour detector of cervical smear images. IEEE Trans. Syst. Man Cybern. 38,
353–366.

Yi, F., Chongxun, Z., Chen, P., Li, L., 2005. White blood cell image segmentation using on-

X. Zheng et al. Micron 107 (2018) 55–71

70

http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0005
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0005
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0010
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0010
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0010
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0015
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0015
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0020
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0020
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0025
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0025
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0025
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0030
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0030
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0030
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0035
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0035
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0035
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0040
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0040
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0045
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0045
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0045
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0050
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0050
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0055
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0055
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0060
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0060
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0060
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0065
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0065
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0065
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0070
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0070
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0075
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0075
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0080
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0080
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0080
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0085
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0085
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0090
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0090
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0090
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0095
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0095
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0095
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0100
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0100
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0100
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0105
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0105
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0105
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0110
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0110
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0110
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0115
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0115
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0115
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0120
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0125
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0125
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0125
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0130
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0130
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0130
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0135
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0135
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0135
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0140
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0140
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0140
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0145
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0145
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0145
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0150
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0150
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0150
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0155
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0155
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0155
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0160


line trained neural network. 27th Annual International Conference of the Engineering
in Medicine & Biology Society 6476–6479.

Zhang, C., Xiao, X., Li, X., Chen, Y.J., Zhen, W., Chang, J., Zheng, C., Liu, Z., 2014. White
blood cell segmentation by color-space-based k-means clustering. Sensors 14,
16128–16147.

Zheng, X., Wang, Y., Wang, G., Chen, Z., 2014. A novel algorithm based on visual saliency

attention for localization and segmentation in rapidly-stained leukocyte images.
Micron 56, 17–28.

Zhi, L., Jing, L., Xiao, X., Hui, Y., Li, X., Chang, J., Zheng, C., 2015. Segmentation of white
blood cells through nucleus mark watershed operations and mean shift clustering.
Sensors 15, 22561–22586.

X. Zheng et al. Micron 107 (2018) 55–71

71

http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0160
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0160
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0165
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0165
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0165
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0170
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0170
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0170
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0175
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0175
http://refhub.elsevier.com/S0968-4328(17)30303-7/sbref0175

	Fast and robust segmentation of white blood cell images by self-supervised learning
	Introduction
	Overview
	Unsupervised initial segmentation
	Background separation
	Touching-cell splitting
	Concave point detection
	Concave point matching


	Supervised segmentation refinement
	Feature extraction
	Sample selection
	Supervised classification using SVM

	Results
	Materials and evaluation methods
	Evaluation of robustness to parameter variations
	Evaluation of feature effectiveness
	Evaluation of sampling effectiveness
	Comparison of segmentation performance

	Discussion
	Sub-images vs. original large image
	Training every time vs. training once for all
	Extension to other application scenarios

	Conclusions
	Acknowledgements
	References




