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PonziLens+: Visualizing Bytecode Actions for
Smart Ponzi Scheme Identification
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Abstract—With the prevalence of smart contracts, smart Ponzi
schemes have become a common fraud on blockchain and have
caused significant financial loss to cryptocurrency investors in
the past few years. Despite the critical importance of detecting
smart Ponzi schemes, a reliable and transparent identification
approach adaptive to various smart Ponzi schemes is still missing.
To fill the research gap, we first extract semantic-meaningful
actions to represent the execution behaviors specified in smart
contract bytecodes, which are derived from a literature review
and in-depth interviews with domain experts. We then propose
PonziLens+, a novel visual analytic approach that provides an
intuitive and reliable analysis of Ponzi-scheme-related features
within these execution behaviors. PonziLens+ has three visual-
ization modules that intuitively reveal all potential behaviors
of a smart contract, highlighting fraudulent features across
three levels of detail. It can help smart contract investors and
auditors achieve confident identification of any smart Ponzi
schemes. We conducted two case studies and in-depth user
interviews with 12 domain experts and common investors to
evaluate PonziLens+. The results demonstrate the effectiveness
and usability of PonziLens+ in achieving an effective identification
of smart Ponzi schemes.

Index Terms—Smart Ponzi Scheme, Visual Analytics,
Blockchain, Smart Contracts.

I. INTRODUCTION

PONZI scheme [1] is a classic financial fraud that appeared
in the offline world over 150 years ago. It uses the

investment of new investors to compensate the existing in-
vestors, and will inevitably collapse and cause financial losses
to most investors. With the rapid development of blockchain
technology, Ponzi schemes have also become widely spread
on blockchain platforms (e.g., Ethereum1) in the past few
years [2], [3]. Such Ponzi schemes leverage smart contracts on
the blockchain and are run in a decentralized, anonymous, and
immutable manner, which are called smart Ponzi schemes [4].
Smart Ponzi schemes often lure investors by posing as high-
profit investment plans [4]. For example, Forsage, a platform
marketed as a low-risk investment using smart contracts, was
revealed to be a $340 million global Ponzi scheme [5]. At
present, smart Ponzi schemes have become one of the most
common frauds for cryptocurrency [6], [7]. Ponzitracker [8]
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reported that the total investor funds at risk in smart Ponzi
schemes reached nearly $3 billion in 2022. Such significant
financial losses to investors seriously affect the development
of the blockchain ecosystem [9], [10].

Although smart contract codes are publicly available on
the blockchain, investors often struggle to verify them and
end up trusting them blindly due to their lack of ability to
thoroughly inspect the code [2]. To protect investors, various
methods have been proposed to automatically detect smart
Ponzi schemes [4], [6], [9], [11]–[16]. Early research focused
on analyzing the transaction records on the blockchain and ex-
tracting features related to Ponzi schemes, such as transaction
frequency, amount, and networks [11]–[14]. However, these
approaches intrinsically depend on the transaction data, mean-
ing that some investors have already finished the immutable
transactions and suffered from financial losses. To achieve
early detection before transactions occur, some approaches
have focused on detecting Ponzi schemes using the smart
contract code (Fig. 1A-C), including the source code, opcode,
and bytecode [2], [4], [6], [9], [15], [17].

The above code-based approaches for smart Ponzi scheme
detection still suffer from two major challenges: (C1) limited
adaptability: These approaches inherently rely on fixed rules
or models trained on existing labeled smart contracts. How-
ever, scammers continuously create new Ponzi scheme variants
that evade these rules or criteria [10], making these ad-hoc
approaches ineffective against new smart Ponzi schemes [15].
(C2) lack of transparency: These approaches leverage ma-
chine learning models, combined with abstract features of
transaction records or codes, to classify smart contracts as
smart Ponzi schemes without providing understandable and
reliable evidence [7]. This makes it difficult for common
investors to make confident investment decisions. Our prelimi-
nary work, PonziLens [17], attempted to visually explain Ponzi
features at the opcode execution level, but it is still difficult for
common investors to understand the complex opcode of smart
contracts and a more intuitive approach is still missing [18].

To address these challenges, we propose PonziLens+, a
novel visual analytic approach to help smart contract in-
vestors and auditors identify smart Ponzi schemes intuitively.
PonziLens+ can reveal the semantic meaning of the smart
contract execution process and allow users to conveniently
validate various smart contracts across three levels: contract,
execution path group, and execution path. Specifically, we
first conduct a preliminary study with four domain experts
to derive design requirements and propose a framework for
semantic action extraction. This framework translates complex
smart contract bytecodes into semantic action sequences, i.e.,
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a series of actions with meaningful semantics, to indicate
the possible behaviors of a smart contract. These action
sequences allow users to identify fraudulent behaviors and
further verify whether a smart contract is a Ponzi scheme,
instead of fully relying on fixed rules (C1). Furthermore, we
propose a novel hierarchical visualization design including
three modules to show the action sequences of a smart contract
in a top-down manner, intuitively revealing the smart contract
behaviors as well as the Ponzi scheme-related features (C2).
With the help of PonziLens+, users can gain deep insights
into the detailed behaviors of any smart contracts and identify
smart Ponzi schemes intuitively and reliably. To evaluate the
effectiveness and usability of PonziLens+, we conducted two
case studies and in-depth interviews with domain experts
and common investors. The results show that PonziLens+
is effective for intuitively identifying smart Ponzi schemes.
Additionally, PonziLens+ also has potential applications in
source code understanding [19] and software testing [20]
beyond Ponzi schemes. To the best of our knowledge, we are
the first to visualize smart contract codes for identifying smart
Ponzi schemes. Our major contributions are listed as follows:

• We formulate the design requirements through collab-
oration with domain experts and propose a framework
to extract semantic-meaningful actions to delineate the
action sequences during the execution of smart contracts.

• We design PonziLens+, a novel visual analytic approach
with three visualization modules to facilitate a com-
prehensive top-down analysis of Ponzi-scheme-related
features in smart contracts, enabling adaptive and reliable
identification of smart Ponzi schemes.

• We present two case studies and conduct in-depth user in-
terviews with both domain experts and common investors
to illustrate the effectiveness and usability of PonziLens+.

Fig. 1. The showcase of critical concepts in this study: (A) shows an example
source code of a chain-type smart Ponzi scheme with investing behavior (A1)
and rewarding (A2) behavior in a loop (A3). (B) and (C) show the bytecode
and opcode of a smart contract. (D) demonstrates the control flow graph with
execution paths (D1) and basic blocks (D2).

II. RELATED WORK

This work is related to prior research on smart Ponzi
scheme detection, visual identification of blockchain frauds,

and software visualization.

A. Smart Ponzi Scheme Detection

Early studies on smart Ponzi scheme detection relied on
manual checks of smart contracts’ source codes [2]. Recently,
automatic smart Ponzi scheme detection algorithms were pro-
posed, which can mainly be divided into transaction-based
and code-based, according to their inputs [15].

Transaction-based methods detect Ponzi schemes by ex-
tracting information from the existing transaction records of
smart contracts. For instance, prior studies [11], [12], [14]
have defined different features of transactions (e.g., payment
frequency and balance) and further trained customized models
with these features to automatically detect Ponzi schemes from
the given smart contracts. Besides, Liang et al. [13] extracted
the structure features of transaction networks and incorporated
them in their Ponzi scheme detection model. These approaches
intrinsically rely on transaction records, making them unable to
achieve the early detection of Ponzi schemes before investors
are really trapped in smart Ponzi schemes.

Code-based methods aim to detect smart Ponzi schemes be-
fore executing transactions by analyzing the code information
(e.g., source code, opcode, and bytecode) available once the
smart contract is deployed. Initially, these methods focused on
relatively simple features like opcode frequency or source code
text [2], [6], [21]–[23]. However, reducing intricate codes to
simple features results in significant information loss, making
it difficult to fully capture runtime information and rendering
these methods unreliable for Ponzi scheme detection. Accord-
ingly, recent studies have utilized Control Flow Graphs (CFG),
which graphically represent a smart contract’s execution paths
to capture its execution logic [9], [15], [24]. However, these
approaches still lack an understandable explanation for why
a smart contract is classified as a Ponzi scheme. Also, these
methods are based on fixed patterns, rules, or models trained
on existing labeled smart contracts, making it hard to detect
new variants of Ponzi schemes. PonziLens+ can visualize the
bytecode execution process of a smart contract as semantically
meaningful action sequences with highlighted Ponzi-scheme-
related features. This allows users to deeply understand why
a smart contract is a Ponzi scheme or not and identify new
variants by checking the detailed behaviors.

B. Visual Identification of Blockchain Frauds

Due to the lack of effective regulation and complex data
in blockchain application scenarios, numerous visualizations
have been developed to help people understand blockchain
data and detect fraud visually [25].

Most studies focus on fraud within blockchain transac-
tions, identifying issues like coin mixing [26], stealing [27],
and money laundering [28] by visualizing value flow and
tracking cryptocurrency movement across entities over time.
Other frauds can be recognized by visualizing features in the
transaction networks, such as high-frequency transactions [29]
and wash trading [30]. Also, visualizing the networks be-
tween various entities (e.g., addresses [31], clusters [32], and
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exchanges [33]) in the blockchain can help identify some
abnormal structures and entities to avoid potential fraud.

In addition to frauds occurring in transaction records, there
are also frauds deployed on the blockchain through smart con-
tracts. These frauds can be detected before transactions occur
by analyzing the code of smart contracts, including Ponzi
schemes (the focus of this study). Before our study, there were
no visualization tools designed for detecting fraud within smart
contract codes. While there are existing visualizations aimed
at aiding in understanding control flow graphs [34]–[36], none
of them focus on fraud detection. Our preliminary study [17]
aimed to visualize the execution paths in the original control
flow graph and revealed the investment and rewarding flows by
recognizing critical opcodes. Nevertheless, it is still difficult
for common investors to understand opcodes and conduct an
in-depth analysis of smart contract codes. Therefore, in this
paper, we move one step further by extracting semantically-
meaningful actions from the opcodes of smart contracts, which
allows common investors to gain deep insights into smart
contracts and easily identify smart Ponzi schemes.

C. Software Visualization

Smart contracts are software on the blockchain [37], which
makes this work also relevant to software visualization. Ac-
cording to the visualized features of software systems, previ-
ous software visualizations fall into three categories [38], [39]:
structure, evolution, and behavior. Structure visualizations
aim to analyze information like source code [40], package
dependencies [41], and control flow graphs [35], [36], to aid
in understanding software structure. Evolution visualizations
analyze the code change history to show the evolution of a
software system [42], [43]. Behavior visualizations display
data collected from program execution like function calls [44]
to facilitate performance optimization [45] and anomaly de-
tection [46]. Existing behavior visualizations typically display
time series [47] or domain-specific event sequences [45], [48].
Our work belongs to the behavior visualization of software,
as smart contract behaviors during execution are visualized.
Unlike existing software behavior visualization methods, our
approach introduces a novel hierarchical visual design that rep-
resents potential smart contract behaviors across three levels
of granularity. This design emphasizes Ponzi scheme features
at different levels of details, enabling users to efficiently audit
a smart contract without navigating complex source code.

III. BACKGROUND

This section introduces the background, including smart
contracts, control flow graphs, and smart Ponzi schemes.

A. Smart Contracts

Smart contracts are self-executing programs deployed on
a blockchain platform, which will be automatically executed
when specific predefined trigger events are met. Smart con-
tracts have been widely utilized across various domains,
including automated payments and asset exchanges on de-
centralized finance (DeFi) platforms [49]. Ethereum [50] is

one of the most well-known blockchain platforms with smart
contracts incorporated. While other blockchains also support
smart contracts, we focus on Ethereum in this study.

Smart contracts can be written in various programming
languages like Solidity, Viper, and Serpent [51]. The code
written in these languages is called the source code of smart
contracts, and Fig. 1A shows an example of the Solidity source
code of a smart contract. When deploying these smart contracts
on the blockchain, they are compiled into the hexadecimal
bytecode (Fig. 1B) and sent to the blockchain. Bytecode
can be converted into a sequence of instructions written in
opcode [52] (i.e., “operation code”) and operands, as shown
in Fig. 1C. For instance, the bytecode “Ox6000” is equal to
an instruction with opcode “PUSH1” and operand “0x00”.
The bytecodes of all smart contracts are accessible on the
blockchain, but not all source codes are publicly released. This
is why we chose bytecodes as the input for our study.

B. Control Flow Graphs (CFG)

In Ethereum, smart contracts execute within the Ethereum
Virtual Machine (EVM), a stack-based run-time environment.
Similar to traditional programs, smart contracts use the stack
for temporary data (e.g., holding variables during function
calls), employ memory for short-term data storage within
a transaction (similar to RAM, Random-Access Memory),
and utilize storage for persistent data that remains accessible
across transactions (like global variables) [50]. Most opcodes
take the values at the stack top as operands and place the
results back onto the stack. Among them, several opcodes can
modify the memory (e.g., MSTORE) and storage (e.g., SLOAD
and SSTORE) [52].

During actual execution in EVM, smart contracts execute
different code paths based on conditional statements (e.g.,
if and else), loops, and function calls. CFG (Fig. 1D) is a
static graphical representation of all potential execution paths
(control flows) of a smart contract [53]. The smallest execution
unit in CFG is the basic block (Fig. 1D2), which consists of
a sequence of instructions. Each basic block has no loops,
and the directed links between basic blocks indicate possible
execution orders. When invoking a transaction, the contract
executes along a sequence of basic blocks in the CFG, which
is determined by the conditions. This sequence is called the
Execution Path (Fig. 1D1).

C. Smart Ponzi Schemes

A Ponzi scheme is a classic financial scam in which in-
vestors are lured with promises of exceptionally high returns
on their investments [1]. The scheme operates by using the
investments from new investors to pay returns to earlier
investors. Such a game continues until there are insufficient
funds left, ultimately leading to the collapse [54]. A smart
Ponzi scheme refers to a Ponzi scheme deployed on a smart
contract [2], [4]. According to existing studies [2], [9], [15],
the features of smart Ponzi schemes are as follows:

• F1. Include investing and rewarding behaviors. Invest-
ing indicates that after receiving an investment the con-
tract records investment information like investor’s ad-
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dresses and investing amount. Rewarding means that the
contract redistributes money among previous investors.

• F2. Receive money only from investors. This feature
can rule out smart contracts with external asset sources,
like a bank that pays the interest of a “smart” bond or
enterprises that distribute incentives to employees.

• F3. Guarantee higher profits for all participants. Each
investor can make a profit if there is enough money in the
contract afterward. This rules out contracts like gambling
or games, where not all investors can get high rewards.

Fig. 1A shows a smart Ponzi scheme written in Solidity.
For F1, Lines 6-7 (Fig. 1A1) indicate that the contract stores
the investor’s address (msg.sender) into an array called Par-
ticipant and updates the Balance with the investment amount
(msg.value) under the condition that the investment amount
is greater than zero (Line 5), which is an investing behavior.
In Fig. 1A2, the contract uses a loop (A2) to pay 10% of
the Balance to each previous investor, which is a rewarding
behavior. This contract aligns with F2 as it contains only one
function for receiving investments and distributing rewards to
previous investors. If there are enough new investments, all
the previous investors can get high rewards, satisfying F3.
Therefore, this contract is indeed a smart Ponzi scheme.

IV. INFORMING THE DESIGN

To achieve a rational design, we conducted a preliminary
study to gather the requirements for guidance. This section
reports the details and feedback of our preliminary study.

A. Preliminary Study

During the preliminary study, we interviewed four domain
experts from both academia and industry, with rich experience
in smart Ponzi scheme detection. E1 and E2 are university
professors whose research areas encompass web3 fraud detec-
tion and smart contract analysis. E3 works as a smart contract
auditor at a web3 security company, while E4 serves as a
business analyst in another web3 company with services in
smart contract auditing. All four experts have strong back-
grounds in smart contracts and diverse insights into smart
Ponzi schemes. We conducted open-ended interviews with
each expert individually, with each session lasting about one
hour. The interview was constructed into three phases, each
focusing on a specific aspect: Necessity of Our Study, Ponzi
Features at Bytecode Level, and Design Requirements. The
feedback about the necessity is introduced in the introduction
and related work sections, while the Ponzi features and design
requirements are described in the subsequent sections.

B. Ponzi Features at Bytecode Level

According to the previous studies [2], [15], smart Ponzi
schemes can be roughly divided into four types:

• Handover-scheme: Upon receiving investments from a
new investor, the contract will proceed to send profits to
the previous investor (the last one who has invested) and
subsequently update the address of the new investor as
the new “last investor” in the scheme.

• Chain-scheme: Upon receiving investments from a new
investor, the contract will distribute profits to all the
previous investors stored in a chain-like structure. Then,
the contract will add the new investor to this chain.

• Tree-scheme: In a tree-scheme, investors are organized in
a tree-like structure based on the invitation relationships.
Upon receiving an investment, the contract will sequen-
tially distribute profits to the previous inviters of each
node in the tree.

• Withdraw-scheme: In a withdraw-scheme, the amount of
each investor’s balance is stored in the blockchain. When
investments are received, it will increase the balance
of each investor, instead of the direct redistribution.
Investors have to invoke another execution to withdraw
their money according to their balance.

During interviews, domain experts pointed out that F1 plays
a pivotal role in identifying Ponzi schemes in terms of contract
bytecodes, i.e., the identification of investing and reward-
ing patterns, which helps eliminate non-Ponzi (not a Ponzi
scheme) contracts quickly and distinguish the types of Ponzi
schemes. Since F2 requires analyzing investing behaviors and
F3 involves examining the amount of investing and rewarding,
identifying these behaviors (F1) is fundamental to both F2
and F3. To facilitate the identification of F1, we define four
critical features at the bytecode level based on the investing
and rewarding behaviors of four typical smart Ponzi schemes,
which are referred to as Ponzi Features (PF) in this paper.

• (PF1) Investing: The execution path stores the investor’s
address in the EVM’s storage for future reward payments.

• (PF2) Payment: The execution path distributes funds to
an entity. This Ponzi feature is helpful for the verification
of fund destinations in smart contracts.

• (PF3) Loop: A loop exists in the execution path. In chain-
schemes and tree-schemes, loops iteratively process pay-
ments to previous investors, while in withdraw-schemes,
loops update the balances of previous investors.

• (PF4) Rewarding: The execution path directly redis-
tributes investment to previous investors, demonstrated
through payments, with the receiver retrieved from the
same slots storing the investor addresses.

C. Design Requirements

During the preliminary study, all the experts (E1-E4) agreed
that the visual identification of Ponzi schemes should follow
a top-down workflow, beginning with a comprehensive under-
standing of the smart contract’s functionality and eventually
finding out the specific execution paths for conducting Ponzi
schemes. Distilling experts’ feedback, we organize the design
requirements into three levels: Contract, Group, and Path.
The contract level provides an overview of Ponzi features
across all potential paths in a smart contract. The group level
emphasizes action patterns within groups of execution paths
of similar Ponzi features, while the path level concentrates on
detailed execution information for each execution path.

• R1 (Contract) Overview the Ponzi feature distribution.
Experts (E1-E4) have noted that initiating the analysis by
gaining an overview of the Ponzi feature distribution can
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Fig. 2. The framework of PonziLens+. (A) shows the data preparation for the collection of potential execution paths. (B) shows the semantic action extraction
that generates semantic action sequences from each execution path. (C) demonstrates three visualization modules in PonziLens+.

aid in rapidly assessing the possibility of a Ponzi scheme.
Grouping paths with similar Ponzi features helps locate
the paths responsible for conducting the Ponzi scheme.

• R2 (Group) Summarize action patterns within each
execution path group. All experts (E1-E4) mentioned
that checking the action patterns of each path group
can help quickly identify the functionality of the smart
contract. E3 emphasized summarizing both unique and
common actions among multiple execution paths can help
understand the overall action patterns of each group more
effectively than presenting each path individually.

• R3 (Group) Highlight the Ponzi features of each path
group. Given R2, two experts (E2, E4) commented that
the visual summary should highlight Ponzi features upon
the concrete actions, which can provide insight into the
evidence of Ponzi schemes and help filter out critical
execution paths for further analysis.

• R4 (Path) Show the detailed action sequences of
individual paths during execution. All experts (E1-E4)
agreed that identifying a smart Ponzi scheme usually de-
pends on the features in several paths, and it is necessary
to analyze the actions of these paths during execution in
detail. E3 pointed out that the time and conditions under
which a path invokes a payment are crucial evidence for
Ponzi scheme detection. Therefore, our method should
visualize the whole action sequences of an execution path.

• R5 (Path) Support the deep analysis of action patterns
of the loop. All experts (E1-E4) emphasized the loop
is a crucial Ponzi feature appearing in three out of the
four Ponzi scheme types. Our method should facilitate the
comprehension of behavior within each round of loops,
including whether each round within the loop performs
the same or different actions. Additionally, E2 added
that actions within the loop can also help identify Ponzi
scheme types and understand the money flow.

• R6 (Path) Display the storage interactions of individual
paths during execution. The storage stores permanent
data of smart contracts, including investment informa-

tion (i.e., previous investors’ addresses and investment
amounts) and rewarding information (i.e., recipient ad-
dresses and profit amounts). All experts (E1-E4) said
that the storage interactions during execution reveal vital
information for Ponzi scheme detection, such as which
slots offer recipient addresses during payments. E4 added
that the storage structure of investors’ addresses indicates
the Ponzi scheme types. For instance, a tree-like structure
often indicates a tree-scheme, while the handover-scheme
typically stores investors’ addresses in variables [15].

V. SEMANTIC ACTION EXTRACTION

This section introduces the semantic action extraction com-
ponent of our approach (Fig. 2B).

A. Action Definitions

As shown in Fig. 1, the bytecodes of smart contracts are
abstract and complex for common investors to understand.
Therefore, we define a set of critical and semantic-meaningful
actions related to Ponzi schemes and transform the bytecodes
of smart contracts into meaningful action sequences. The
definitions of actions ensure that the aforementioned Ponzi
features can be reflected and the design requirements can
be supported by these actions. Specifically, we define four
critical actions related to smart Ponzi schemes. The actions
and corresponding definitions are as follows:

Write Information captures the action of storing informa-
tion in EVM storage slots. This action can help capture PF1,
i.e., storing investment information, as well as inferring the
contents and structure of storage slots (R6).

Invoke Payment signifies that a smart contract issues a
specific payment to a recipient, a common feature (PF2) in
all the Ponzi schemes for distributing profits to investors.
Tracking money flow is crucial for identifying such schemes.

Check Constraint represents the specific conditions that the
execution path should meet, particularly at decision points in
CFGs. For example, the path involving the investing function
requires that the amount invested must exceed a specific value.
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Read Information involves loading values into EVM stacks
for processing, including data from storage slots or EVM
context (like contract balances or current timestamps). While
this action is not tied to a specific Ponzi scheme, it aids in
deducing a complete action sequence, particularly when other
actions are too complex to understand.

B. Data Preparation

To identify and generate the above four actions, we first
collect all feasible execution paths of a smart contract as
depicted in Fig. 2A. Given a smart contract address that users
want to analyze, we start by retrieving the bytecode using
EtherScan2, a well-known blockchain explorer. Subsequently,
we build a CFG from these bytecodes with the aid of Teether,
a smart contract testing tool [55], and traverse all paths in the
graph. According to R5, when a loop is present in a path,
we collect only the paths that encompass two rounds of the
loop, which reduces the repeated paths and ensures sufficient
information is gathered to deduce the loop’s functionality.
Finally, we use Teether [55] to run symbolic execution and
test each path, collecting all potential execution paths that can
successfully run on the real blockchain.

Symbolic execution is a software testing technique that
replaces normal inputs (e.g., numbers) with symbolic values
(e.g., formulae) during execution [56]. For smart contracts,
actual values are replaced by symbolic ones, such as CALLER
for the investor’s address and CALLVALUE for the investment
amount. During the symbolic execution, the contents in the
stacks are represented as Z3 constraints, i.e., formulas with
semantic meanings that can be parsed by Z3 [57], a constraint
solver. For example, if the top two stack contents are CALL-
VALUE and 1, executing the ADD opcode will result in a Z3
constraint CALLVALUE+1. By analyzing these Z3 constraints
in stacks when specific opcodes are encountered, we can derive
the semantic meaning of the opcode operations and construct
the corresponding semantic actions.

C. Action Sequence Generation

We select a subset of opcodes related to the four actions
and construct a semantic action sequence for each collected
path. Specifically, we extract actions by analyzing the content
in the EVM when encountering specific opcodes during the
above symbolic execution, following four steps (S1-S4) shown
in Fig. 2B. Steps S1-S3 follow the bytecode execution process
on the EVM, where each opcode first manipulates the stack
and then interacts with storage, while S4 aims to make the
generated actions understandable for users.

S1. Find Specific Opcodes: Each action is associated with
specific opcodes. For example, SSTORE is used for Writing
Information, while CALL is used to Invoke Payment. Upon
encountering any of these opcodes during symbolic execution,
we can initially identify the four action types and
then conduct S2-S4 to enrich its semantic information.

S2. Stack Parsing: In the EVM stack, we extract the current
operation parameters for the above opcodes. For example, the

2https://etherscan.io/

two parameters of SSTORE indicate what content is stored
in which storage slot for Write Information. With CALL,
we identify the recipient’s address and the payment amount
for Invoke Payment. These parameters are represented as
symbols in the format of Z3 constraints [57] during symbolic
execution, instead of concrete numerical values, and are inter-
actively shown in the tooltip in PonziLens+.

S3. Storage Parsing: By analyzing these Z3 constraints
collected in S2, we can collect the relationships between
storage slots and actions, i.e., where these values are collected
from or related to which slots, and the slot structures. (The
relationships between storage slots and actions are represented
as the links between actions and storage slots in the Execution
Detail Module). For instance, Invoke Payment retrieves the
recipient’s address from which slot or calculates the payment
amount depending on values from which slot. For Write In-
formation, we can recognize the data structures (e.g., variable

or array ) of storage slots by the different Z3 constraints
for slot numbers.

S4. Translation: With S1-S3, we can depict actions from
the perspective of program execution, such as writing specific
content into a particular slot. S4 aims to translate the infor-
mation collected from S1-S3, especially Z3 constraints, into
understandable semantics, further aiding users in identifying
Ponzi scheme features. For example, if the content written by
Write Information is identified as the investor’s address, we
mark it as Investing (PF1) and record the target slot storing
investor addresses. Its slot structure can help identify the chain
or tree types of Ponzi schemes. If an Invoke Payment action
collects the payee’s address from this slot, it is marked as

Rewarding (PF4). Additionally, if Write Information writes
content that includes the previous content of the same slot,
we mark it as “ Update Information”, commonly used in
Ponzi schemes for updating investor counts or balance. If
Invoke Payment’s payee is the current investor CALLER ,
we label it as “ Payback”, which often occurs when investors
withdraw money, indicating a withdraw-scheme, or return their
investment when certain conditions are not met.

Through these four steps, we collected action types (S1),
operands (S2), storage slot interactions (S3), and relations with
Ponzi features and additional semantics (S4), representing each
execution path as a sequence of semantic actions.

VI. PonziLens+

Built upon the semantic action sequences, we propose
PonziLens+, a visual analytic system to facilitate the early
identification of smart Ponzi schemes. As shown in Fig. 2C,
PonziLens+ includes three visualization modules that enable
users to diagnose a smart contract at three levels. Path Feature
Module displays the distribution of Ponzi features across all
the paths by grouping paths with similar features (R1). Path
Grouping Module offers visual summaries for each path group
(R2) and highlights Ponzi features within it (R3). Execution
Detail Module presents detailed action sequences and stor-
age interactions during individual executions (R4-R6). Fig. 3
shows the user interface of PonziLens+, where users initially
see the Path Feature Module and Path Grouping Module and
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Fig. 3. The PonziLens+ interface initially presents the Path Feature Module (A) and Path Grouping Module (B). Upon selecting specific actions of interest,
users can access the Execution Detail Module (C), including a scroll bar (C1) to allow users to delve into one single path for more details.

can unfold the Execution Detail Module by selecting one or
multiple paths from the Path Grouping Module.

A. Path Feature Module

The Path Feature Module (Fig. 4A) offers a quick overview
of Ponzi feature distribution across all the execution paths,
assisting users in identifying path groups that have a high
risk of being a Ponzi scheme. Initially, the execution paths
are grouped based on the four Ponzi features (PF1-PF4)
mentioned in Section IV-B (Fig. 4A1), with paths sharing
the same features grouped. PF1 and PF4 are marked in S4
of semantic action extraction while PF2 and PF3 are labeled
based on the presence of Invoke Payment and loops in the
action sequences. To visualize the distribution of multiple
dimensions (PFs) across various path groups, parallel sets
offer a natural visual design since it has been proven effective
in visualizing categorical data distribution across multiple
dimensions [58]. Parallel sets can also clearly demonstrate the
number of paths in each group, which is crucial for users
to estimate the proportion of paths with suspicious features.
Moreover, encoding the number of paths in each group through
band width helps link to the Path Grouping Module, allowing
users to smoothly delve into path behaviors. Therefore, we
adopt parallel sets as the layout for the Path Feature Module.
Specifically, each column corresponds to a Ponzi feature. Path
groups are represented by bands (Fig. 4A3), with their widths
(Fig. 4A2) reflecting the number of paths in each group. Path
groups with a certain feature are indicated in dark green ,
while those without are shown in light green . These bands
traverse four columns and are colored based on whether the
groups possess these features. The total height of the dark
(Fig. 4A4) or light green (Fig. 4A5) bars represent the count
of paths with or without certain Ponzi features, respectively.

The arrangement of both Ponzi features and path groups is
important in the Path Feature Module since a bad arrangement
will make the analysis counter-intuitive or result in band
crossings [58]. We ordered the Ponzi features according to
the typical flows of manual analysis, starting with “Investing”

and followed by “Payment” to identify direct redistribution
after receiving investments. “Loop” checking is used next to
eliminate irrelevant paths. “Rewarding”, indicative of paying
previous investors, is listed as the final feature, as it needs
the first two features and helps determine which group has
a high risk for subsequent analysis. To reduce edge crossing,
we first set an initial order by sorting path groups based on
whether they contain the four features. Groups with a specific
feature are placed above those without it. In practice, users
can also interactively adjust the feature order according to their
interests by dragging and dropping the Ponzi feature name.

B. Path Grouping Module

The Path Grouping Module (Fig. 3B) offers visual sum-
maries for each group, where we use circles in four di-
verse colors to represent four semantic actions (i.e., blue for
“ Write Information”, red for “ Invoke Payment”, yellow for
“ Check Constraint”, and grey for “ Read Information”), as
shown in Fig. 4B. The action sequences are arranged linearly
from left to right, encoding the execution order, and are divided
according to their basic blocks, with grey blocks added
behind them for clarity and distinction.

Since displaying all paths is overwhelming, we propose
a two-step path-merging strategy (Appendix A) to maintain
the essential backbone of paths within a single group. First,
we group paths that share the same basic block sub-sequence
without order conflicts and merge paths based on those basic
blocks, as shown in Fig. 4B2. Second, we check each merged
basic block to verify whether all paths containing this block
have the same action sub-sequence, and further separate the
paths with different actions within the merged blocks, as
shown in Fig. 4B3. Note that actions of the same type
but with different parameters (operands in the stacks during
symbolic execution) are also separated. When drawing this
visualization, the x-axis represents the basic block sequence
of merged paths, covering all blocks traversed by paths in this
group. The y-axis marks the start and end points of all paths in
the group before merging. In the middle, the width of each line
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Fig. 4. The visual design of three visualization modules in PonziLens+. Path Feature Module (A) shows the Ponzi feature distribution across all execution
paths. Path Grouping Module (B) provides a visual summary of action patterns in each path group, incorporating a path merging strategy (B1-B3) and
highlighted Ponzi features (B4). Execution Detail Module (C) shows the detailed action sequences and storage interactions in each execution path.

reflects the number of merged paths. Therefore, this module
can provide a comprehensive summary of the action patterns
within each group, offering a clear and organized view of the
involved execution paths (R2). Also, we highlight the Ponzi
features (S4 in Section V-C) in the action summary (R3) to
distinctly mark where these features occur during execution,
as shown in Fig. 4B4. The “ Investing” and “ Payment” are
highlighted by black circles surrounding blue and red circles,
respectively. “Loop” is represented by a purple wrapper
that encases the basic blocks involved in the loop. To signify
the “rewarding”, which means paying previous investors, we
connect the “investing” and “payment” actions that operate on
the same storage slot with a black line .

C. Execution Detail Module

The Execution Detail Module (Fig. 4C) displays the detailed
action patterns of individual paths (R4). Actions are placed
from left to right, like those in the Path Grouping Module,
as shown in Fig. 4C1. For clarity, it uses large icons with
a letter inside to represent the four actions , which
are encoded in the same color scheme as those in the Path
Grouping Module. “ Update Information” and “ Payback”
(S4 in Section V-C) are highlighted with a white border.

For an in-depth analysis of loops, we collect actions from
two rounds of each loop for comparison (R5), since one round
is not enough to confirm whether the loop repeats the same
actions across different rounds. Two rounds are usually ade-
quate for users to spot possible changes, making it unnecessary
to include more rounds. Specifically, the actions within loops
in the Execution Detail Module are arranged on a two-round
Archimedean spiral (Fig. 4C3), with the two rounds placed
on the outer and inner circles, respectively. The Archimedean
spiral ensures uniform distance between the same actions
of two rounds, facilitating an easy comparison. The spiral’s
design aligns with the user’s intuitive understanding of loops.
As loops typically traverse the same basic blocks, the two
rounds often involve the same sequence of actions, though the
same actions may have different parameters. The actions in
the second round (inner circle) are simplified as smaller circles

without letters to reduce repeated information. Those actions
with different parameters in the second round are highlighted
with black circles and middle lines, as illustrated in Fig. 4C4,
which aids users in recognizing the differences quickly.

For visualizing storage interactions (S3 in Section V-C), the
storage slots used by the smart contract are depicted beneath
the action sequence (as shown in Fig. 3C3). Three distinct
purple square icons represent the typical storage structures:
a pure square for variables , a square with horizontal lines
for arrays , and a square with vertical lines for mappings .
Purple circles are listed under these square icons to sym-
bolize the data stored in these slots, where we use some
symbols (as shown at the bottom of Fig. 4C) to highlight
the content involving the Ponzi-scheme-related information
like the investor’s address (CALLER ) and amount (CAL-
LVALUE ). The contents stored in these slots are connected
to the corresponding actions in the action sequence that writes
them. These connections are represented by lines, colored
blue for writing Ponzi-scheme-related information and grey
for writing unrelated information. In addition, red solid and
dashed lines are used to indicate which storage slots the
“ Invoke Payment” retrieves its parameters from, for the
recipient address and payment amount, respectively. When
an action writes CALLER in a slot and a payment action
retrieves the recipient’s address from the same slot, this slot is
highlighted in black to denote “Rewarding” previous investors
directly since this slot is used for storing investors’ addresses
in this smart contract. In summary, the Execution Detail
Module enables users to infer the structure and functionality
of each storage slot and to understand the storage interactions
of the “ Write Information” and “ Invoke Payment” actions.

D. Interactions

PonziLens+ enables rich interactions to allow users to verify
whether a smart contract is a Ponzi scheme smoothly.

Hovering to show details. In PonziLens+, users can hover
over an action to view a tooltip displaying details of this
action collected from S1-S4 in Section V-C, such as target
slot and content for Write Information, payee and value for
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Write Information 
Invoke Payment 
Check Constraint 
Read Information 

PF1 (Investing)
PF2 (Payment)

PF4 (Rewarding)

PF3 (Loop)

Update Information W

P Payback

Encoding Description

Circles in the four color encode the four aciton types.

Grey blocks wrapping a set of circles indicate actions in a 
basic block.Basic Block

Blue circle with outer black circle indicates the action storing 
investor address (PF1: investing); Red circle with outer black 
circle indicates the action invoke a payment (PF2: Payment).
Purple wrappers out of a set of basic blocks indicate these 
blocks can be execute in a loop (PF3).
Black line linking PF1 and PF2  indicate paying to previous 
investors (PF4: Rewarding).

W
P
C
R

Blue circle with white border indicate the action write a con-
tent derived from the orignal content in this slot; Red circle 
with white border indicate pay back to the current investor.

Variable

Array

Mapping

Purple square icons represent typical storage structures:
a solid square for variables, a square with horizontal lines for 
arrays, and a square with vertical lines for mappings. These 
icons are highlighted in black when a Rewarding (PF4) event 
occurs on this storage slot.

Caller
$ Callvalue$

Other contents Purple circles represent the data stored in storage slots, with 
specific symbols indicating content related to the investor’s 
address (CALLER) or amount (CALLVALUE).  A black border 
indicates that the content is exactly one of these two. 

Fig. 5. A summary of visual encoding used in PonziLens+.

Invoke Payment, and specific constraints for Check Constraint.
For storage contents, hovering reveals the underlying Z3
constraints that indicate the content’s meaning.

Navigating to paths of interest. PonziLens+ enables users
to easily locate suspicious paths among numerous paths by
interacting with three modules. Users can first select a path
group with specific Ponzi Features in the Path Feature Module,
then click on actions of interest with specific patterns in the
Path Grouping Module. These actions are highlighted with a
hand icon, and all related paths are marked in black for easy
tracking. Meanwhile, the Execution Detail Module appears
below to display detailed execution information for the paths
containing the selected actions, and users can switch between
paths using a scroll bar (Fig.3C1).

Comparing two rounds in a loop. When users want to
check the changes between two rounds of a loop, they are
allowed to click the highlighted actions in the inner circle
to invoke the tooltip to demonstrate the differences in the
parameters between the two rounds, where the same parts are
colored in green while the different parts are colored in red.

The case studies in Section VII will show how to use these
interactions in PonziLens+.

VII. CASE STUDY

This section presents two case studies to demonstrate
the effectiveness of PonziLens+ in identifying smart Ponzi
schemes, with or without typical features. These case studies
were conducted by two users (U4 and U7) of our user
interviews, as will be introduced in Section VIII.

A. Case 1: Scrutinize a Typical Chain Scheme

U7 is the creator of a Web3 community and has four years
of Web3 investment experience. He knows what smart Ponzi
schemes are, but lacks experience in auditing the source code.
In the Path Feature Module, U7 quickly identified a path group
possessing all four Ponzi features (Fig. 3A), indicating that

each path in this group involves investing, rewarding, and at
least one loop. Next, he investigated the visual summary of
this group (Fig. 3B) and noticed two purple wrappers with
a red circle highlighted with a black circle , as depicted in
Fig. 3B1. It showed that the path group contained two loop-
involved payments. Further, a red circle in the loop connecting
to a blue circle by a black line suggests repeated payments
to earlier investors, which is a clear sign of a Ponzi scheme. U7
wondered if the two loops conducted repeated actions, so he
clicked to select two payment actions in the loops and unfold
the Execution Detail Module. As shown in Fig. 3C2, he easily
observed that payments in the inner circle were highlighted in
both loops, signifying that this path invokes different payments
in two rounds of loops. He also noted that the payments in
the first loop had no connections to the storage, whereas those
in the second loop retrieved the receiver’s address and the
payment amount from storage. From this, he speculated that
the payments of the first loop probably were not to previous
investors, while the payments in the second loop were mainly
for distributing money to existing investors.

The chain-scheme is one of the four popular types of smart
Ponzi schemes [15], utilizing a loop to redistribute new invest-
ments to each previous investor, whose addresses are stored
in a chain-like structure (e.g., an array). Given that this smart
contract involves payments to previous investors in a loop
and the slots storing investors’ addresses are exactly an array
(Fig. 3C4), U7 expressed strong confidence in concluding that
this contract is indeed a smart Ponzi Scheme, i.e., a chain-
scheme. Such a judgment helped him with an easy decision-
making of not investing in this smart contract.

B. Case 2: Identify a new variant of smart Ponzi Scheme

U4 is a smart contract auditor at a Web3 company and one
major task of his daily job is to detect vulnerabilities in smart
contracts through programs and manual inspection. He knows
smart Ponzi schemes and the losses they cause to investors,
but his work focuses on checking whether smart contracts can
be executed successfully instead of frauds like Ponzi schemes.

Initially, U4 observed that there were no path groups with
multiple Ponzi features and only one path group has the
payment feature in the Path Feature Module (Fig. 6A). Thus,
he initially speculated that this smart contract was probably not
a smart Ponzi scheme. But to further validate his judgment, he
chose to delve deeper and checked the Path Grouping Module
(Fig. 6B). He noticed that the paths in the group with payments
were divided into two subgroups by our path-merging strategy.
By hovering over the two yellow circles (i.e., “ Check Con-
straint”), U4 noticed that both groups had the same constraint
(CALLVALUE>1000Wei) but different conditions, i.e., False
for the upper one (Fig. 6B1) and True for the lower one
(Fig. 6B2). This indicated that if the investment amount
was more than 1000 Wei (a measurement unit of the native
Ethereum cryptocurrency), the contract would execute paths
in the lower subgroup, and vice versa. After clicking on the
payment action in Fig. 6B3 to view the execution details, U4
noticed a red circle enclosed by white and connected to Slot
2 via a dashed line. This indicated that the contract returned
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  Invoke Payment  
To: CALLER
Value: STORAGE [2]

      Check Constraint
CALLVALUE> 1000 Wei  (False)

      Check Constraint
CALLVALUE> 1000 Wei  (True)

  Invoke Payment  
To: 0x27fe76......2e72
Value: CALLVALUE / 10
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STORAGE [2] + CALLVALUE / 400

C3

Fig. 6. A case for identifying a non-typical smart Ponzi scheme. The Path Feature Module (A) shows no path groups with multiple Ponzi features. However,
the Path Grouping Module (B) shows subgroups of paths with different investing amounts (B1 and B2), and one subgroup pays back the money to the
CALLER (B3). The Execution Detail Module (C) shows more execution details to help conclude this contract is a Ponzi scheme.

the money to the current CALLER, with the payment amount
retrieved from Slot 2. U4 confirmed that the paths in this
subgroup were probably used to invoke a withdrawal function,
returning money to the current CALLER. Being curious about
how the withdrawn amount was determined, he checked each
blue circle to find the “ Write Information” that stored the
amount in Slot 2 (Fig. 6C2) and clicked it to view the details
in the Execution Detail Module (Fig. 6C). The content stored
in Slot 2 (Fig. 6C3) showed that the amount that investors
can withdraw was increased by CALLVALUE/400. Since these
paths were executed only when the investment exceeded 1000
Wei, it indicated that the value would increase with each new
investment. Additionally, U4 noticed a “ Invoke Payment”
(Fig. 6C1) at the start of the path, where CALLVALUE/10
was paid to a specific address. He concluded that the smart
contract charged ten percent on each investment.

The above analysis overturned U4’s initial hypothesis, lead-
ing him to conclude that the contract was indeed a smart Ponzi
scheme, despite lacking typical features like loops or direct
rewards. This contract still exhibited essential Ponzi scheme
characteristics, such as maintaining a record of funds owed to
prior investors, increasing profit amount based on a portion of
new investments, and enabling investors to withdraw profits
through additional invocations of the smart contract. U4 noted
that when the contract balance is sufficient, all investors can
receive profits, while the scheme would collapse once the
balance becomes limited and unable to sustain payouts to prior
investors. He also emphasized that this kind of contract can
easily evade existing rule-based detection methods and that
PonziLens+ was indeed effective in identifying such a new
variant of those typical smart Ponzi schemes.

VIII. USER INTERVIEW

We conducted semi-structured user interviews with 12 target
users to evaluate the effectiveness and usability of PonziLens+.

A. Participants and Apparatus

We recruited 12 participants (U1-U12) from Web3 commu-
nities and universities for our user interviews (2 females, 10
males, agemean = 28.33, agesd = 4.21, with normal vision
and no color-blindness). All the participants have enough
background in blockchain and smart contracts, and they have
experience in investing in smart contracts. Our participants can
be categorized as expert users and common users based on
their smart contract auditing experience. U1-U6 are experts
skilled in writing and auditing smart contract source code.
U7-U12 are typical investors without such auditing experi-
ence, with only U7 being able to understand source code.
Among them, five participants (U1-U3, U6, U8) are academic
researchers specializing in Web3 security, with two (U2-U3)
focusing on smart Ponzi scheme detection. U4 and U5 have
experience in smart contract auditing within Web3 security
companies. The other participants (U7, U9-U12) are typical
investors with domain knowledge. Participants’ profiles are
shown in Table 1 of Appendix B.

Our interviews were online via Zoom. We launched the
prototype system of PonziLens+ on the server and allowed
participants to assess it via their own laptops or desktops. Each
interview lasted about one hour, and we paid a compensation
of $15 to each participant for their time in our user interviews.

B. Procedure

The interview began with an explanation of the background,
visual design, and workflow of PonziLens+. Following this,
we presented a usage scenario to the participants, guiding
them on how to utilize PonziLens+ for verifying a smart
contract. The tutorial above lasted about 15 minutes. During
the interview, the only task was to check whether a smart
contract was a Ponzi scheme. Hence, we asked participants to
leverage PonziLens+ to verify two smart contracts: one Ponzi
contract and one non-Ponzi contract, both randomly selected
from a published dataset [10]. This task phase had no hard
time limit and lasted until participants reached a conclusion,
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Fig. 7. The user interview questionnaire results. Q1-Q11 are close-ended questions assessing PonziLens+’s workflow effectiveness (Q1-Q4), visual design
and interactions (Q5-Q7), and usability (Q8-Q11), rated on a 7-point Likert scale. Q12-Q13 are open-ended, collecting participant feedback on pros and cons.
Results are visualized in a horizontally stacked bar chart, with expert users marked by white circles.

which usually lasted about 30 minutes in practice. Finally, we
asked participants to finish a post-study questionnaire with 13
questions (Q1-Q13), as shown in Fig.7. Q1-Q11 are close-
ended questions that should be answered on a 7-point Likert
scale and are designed to evaluate PonziLens+’s workflow
effectiveness (Q1-Q4), visual design and interactions (Q5-Q7),
and usability (Q8-Q11). Q12-Q13 are open-ended questions to
collect participants’ feedback on the advantages/disadvantages
and possible improvements of PonziLens+. Overall, each user
interview session took about 60 minutes. All the data collected
from the participants were recorded with their permission.

C. Results

Fig. 7 presents the participant responses from our post-
study questionnaire. Overall, PonziLens+ received high rat-
ings for the close-ended questions. Participants unanimously
confirmed that there were no existing tools like PonziLens+
that could offer convincing rationales for identifying smart
Ponzi schemes. Notably, expert users tended to give higher
scores, appreciating PonziLens+’s effectiveness in benefiting
their contract auditing, as marked in Fig. 7. However, common
investors desired more comprehensive tutorials, as they often
have a limited background in scrutinizing smart contract
execution. The main feedback can be summarized as follows:

Workflow Effectiveness. Most ratings for Q1-Q4 are pos-
itive, which demonstrates that PonziLens+ has an effective
workflow for the visual identification of smart Ponzi schemes.
Notably, U5 scored “2” for Q2 and Q3. He faced challenges in
correlating the actions with the smart contract’s source code, as
his work only involved source code analysis. U5 acknowledged
that symbolically executing bytecodes accurately reflects the
actual execution process and can cover all smart contracts
on the blockchain. However, he pointed out that investors
typically lack trust in smart contracts without available source
codes, so the source codes can also become suitable inputs
to offer extra information for verification. Among the three
visualization modules (Q1-Q3), the Path Grouping Module
received a relatively low mean score (i.e., 5.5/7). U8, U9,
and U11 found it easy to identify actions marked as Ponzi
features, like those in loops or black outer circles, but struggled
to assess the usefulness of unhighlighted actions, such as

Check Constraint, in identifying Ponzi schemes. Therefore,
they requested specific examples of unhighlighted actions in
tutorials for better guidance.

Visual Design and Interactions. All participants agreed
that our visual designs are intuitive and provide enough in-
formation for identifying Ponzi schemes. Also, they found the
interactions user-friendly. They appreciated the Path Feature
Module and highlighted features in the Path Grouping Mod-
ule, which can help quickly understand potential suspicious
behaviors. However, some found PonziLens+ hard to grasp at
the very beginning, particularly in establishing the initial corre-
lation between execution processes and visual encoding. Once
they grasped our semantic action scheme, they acknowledged
the design’s clarity in showing execution processes.

Usability. Overall, participants believed that PonziLens+
was easy to learn and use (Q8-Q9). After familiarizing them-
selves with PonziLens+, they all expressed willingness to use
it in the future and recommend it to others (Q10-Q11). Both
expert users and common investors noted that it took them
some time to learn the typical features and action patterns of
various Ponzi scheme types due to the lack of knowledge about
them. They suggested that more detailed tutorial documents
and examples could be included in PonziLens+.

Open-ended Questions. In response to Q12, all the partici-
pants praised PonziLens+ for offering clear evidence of Ponzi
scheme detection, which boosted their analysis confidence.
Additionally, visualizing all potential behaviors greatly aids in
understanding the contract’s function. However, they expressed
concerns about the learning curve; while investors can easily
grasp actions like payments, they may struggle with con-
cepts like storage interaction and stack manipulation. Despite
not fully understanding the underlying execution of smart
contracts, participants indicated that PonziLens+ helps them
correlate actions with Ponzi features. For future improvements
(Q13), three participants (U2, U6, and U11) proposed adding
an initial suspicious score for smart contracts to guide sub-
sequent analysis in PonziLens+. U3 pointed out that existing
Ponzi features and types might not encompass all new Ponzi
schemes. He suggested that PonziLens+ could be enhanced to
allow users to define new features and incorporate them into
the Path Feature Module. These suggestions are promising and
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we plan to further improve PonziLens+ according to them.

IX. DISCUSSION

In this section, we report the lessons we learned during the
development of PonziLens+. Also, we discuss the generaliz-
ability and limitations of PonziLens+.

Algorithms vs. Visualization. Before our work, smart
Ponzi scheme detection mainly relied on manual inspection
and automatic algorithms [10]. The advantage of algorithms is
their ability to quickly scan numerous contracts without human
effort. However, they depend on manual labels or predefined
rules, which may not cover all Ponzi scheme types and can also
result in false alarms. During this study, PonziLens+ has been
utilized to check some smart contracts labeled by automatic
algorithms in prior research [15] and have found some wrong
labels provided by the automatic algorithms. One example has
been reported in Section VII-B). Also, we have identified
some smart Ponzi schemes that lack typical features or can
not be classified into any known Ponzi scheme types. Further,
investors prioritize precise, understandable results for specific
smart contracts of interest, rather than checking a large amount
of smart contracts at once. In this context, visualization can
play a critical role in revealing the evidence of Ponzi schemes
intuitively and additionally aids in both manual inspections
and expanding labeled datasets rapidly.

Experts vs. Investors. PonziLens+ is designed for both
smart contract auditors and common investors hoping to make
informed investment decisions. Our user interviews revealed
different analytical ways between these two types of users.
Common investors particularly appreciate the Path Feature
Module and Path Grouping Module, which enable them to
observe the Ponzi feature distribution and check how these
features manifest in action sequences by the highlighted Ponzi
features. They usually do not delve into the Execution Detail
Module to check the storage interactions, except for checking
the loop details. They also recommend adding an initial sus-
picious score and more examples of action patterns in various
Ponzi schemes. However, expert users prefer to scrutinize
detailed action patterns in both the Path Grouping Module and
Execution Detail Module to gather more convincing evidence
during execution because they find the patterns in the Path
Feature Module a bit general to reach a solid conclusion
about whether it is a smart Ponzi scheme. They also desire
to incorporate more information about the source code for
mapping action patterns to the actual contract codes. Overall,
PonziLens+ meets the needs of experts and investors, but it can
be improved to further satisfy their customized requirements.

Generalizability. Although PonziLens+ focuses on smart
Ponzi schemes, it can be generalized to other applications.
First, our workflow and visual designs can be easily extended
to identify other vulnerabilities and frauds, such as Multiple
Send [59] and Honeypots [60], by replacing the Ponzi-specific
features with other suspicious behaviors. Second, our approach
of intuitively representing the code execution process as se-
mantic action sequences can assist in broader scenarios involv-
ing software code understanding, such as software testing [20].
For example, software engineers typically review source code

and develop test cases for deeper analysis. PonziLens+ can
expedite this process by providing both an overview and
detailed action patterns during software execution.

Limitations. As smart contract applications become more
extensive and complex, often involving multiple contracts,
massive potential execution paths can lead to scalability issues.
Our path grouping and merging strategies help mitigate such
scalability issues to some extent, and further improvements can
be made by grouping paths based on functions and filtering
actions by their semantics. Also, PonziLens+ targets Ponzi
schemes that embed fraudulent logic within smart contract
codes, which is common in blockchain-based scams. However,
there are also scams where the fraudulent logic occurs off-
chain, such as PlusToken [61], which can only be identi-
fied through fund flow analysis and is beyond the scope of
PonziLens+. Further, symbolic execution’s intrinsic limitations
may limit the performance of PonziLens+, such as ignoring
the gas limits causes exploring paths that are not executable
in practice or skipping some paths that the Z3 solver cannot
resolve. To mitigate these limitations, we can incorporate gas
estimation and employ testing techniques with concrete inputs
rather than symbolic ones, such as fuzz testing [9].

X. CONCLUSION

In this work, we first proposed a framework to extract se-
mantically meaningful action sequences to intuitively represent
each potential execution path in a smart contract. Then, we
proposed PonziLens+, a visual analytic system for identify-
ing Ponzi schemes based on these semantic actions, which
incorporates three visualization modules to demonstrate the
action patterns of a smart contract at three different levels and
highlight the features related to Ponzi schemes. We conducted
two case studies and in-depth user interviews with 12 users.
The results demonstrate that PonziLens+ is useful and effective
in assisting users to easily identify smart Ponzi schemes.

In future work, we will enable users to define custom
action patterns beyond Ponzi features, expanding PonziLens+
to broader smart contract testing and auditing. Furthermore,
given that there is an increasing number of cryptocurrency
investors using mobile devices (e.g., smartphones) to conduct
their investments [62], it is also worth further exploring how
PonziLens+ can be extended to mobile devices.
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APPENDIX

A. PATH MERGING STRATEGY

In the appendix, we describe the details of our Path Merging Strategy used in Path Grouping Module as shown in
Algorithm 1. Our path-merging strategy has two steps: Step 1: Merge paths sharing the same basic block sub-sequence.
Represent each execution path by its basic block number sequence, group paths with identical sub-sequences and no order
conflicts, and merge them to create the longest sequence that includes all basic blocks of these paths. Step 2: Separate paths
with different actions in merged basic blocks. Compare the semantic action sequences of different paths in the merged basic
blocks from Step 1. If different actions are found within the same basic block, separate them to maintain individual actions.
After the above two steps, we visualize the merged execution paths in the Path Group Module.

Algorithm 1: Path Merging Strategy
Input: L: Execution paths list, where each path consists of a sequence of basic blocks, and each basic block contains a

sequence of actions.
Output: MergedPaths: List of merged paths, where the same basic blocks are merged and the different actions in

merged blocks are separated.
/* Step1: Merge paths sharing the same basic block sub-sequence */
/* Map each path in L into a sequence of basic block index */

1 BasicBlockSequences←MapToBasicBlockSequences(L);
/* Divide basic block sequences into sub-groups by the rule: sharing the same

basic block sub-sequence without order conflicts */
2 BasicBlockSequencesSubGroups← GroupByRule(BasicBlockSequences);
3 FullSequenceList← []; /* List of full sequence for each sub-group */
4 MergedPaths← []; /* List of merged paths with different actions separated */
/* For each sub-group of paths that can be merged */

5 for each subGroup in BasicBlockSequencesSubGroups do
/* Merge all basic block sequences of a sub-group into the longest full

sequence */
6 FullSequence←MergeIntoFullSequence(subGroup);
7 FullSequenceList← Add(FullSequence);

/* Step2: Separate paths with different actions in merged basic blocks */
8 Differences← []; /* Different actions in the merged paths */
9 for each BasicBlock in FullSequence do

/* Get a set of paths containing this basic block from the sub-group */
10 PathsSet← GetPathByBlock(BasicBlock, subGroup);

/* Fetch action sequences of this basic block from the original path data */
11 ActionSequences← GetActionSequences(PathsSet, L);
12 Difference← CompareActions(ActionSequences);

/* Compare the differences in actions among paths */
13 Differences← Add(Difference)
14 end
15 MergedPaths← Add(FullSequence,Differences)
16 end
17 Return MergedPaths
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B. PARTICIPANT INFORMATION TABLE

In the user interviews, we gathered participant profiles, including gender, age, and experience with web3 applications and
smart contract auditing. We also asked them to describe how smart contracts relate to their daily work. All the participants
have enough background in blockchain and smart contracts, and they have experience in investing in smart contracts. For
participants who preferred not to describe their specific jobs, we just marked them as “A web3 investor who has invested in
smart contracts” in this table.

TABLE I
THE DETAILED INFORMATION OF THE USER INTERVIEW PARTICIPANTS. ALL PARTICIPANTS ARE EXPERIENCED IN SMART CONTRACT INVESTMENT.

U1-U6 HAVE EXPERIENCE IN AUDITING SMART CONTRACTS, WHILE U7-U12 LACK EXPERIENCE IN SMART CONTRACTS AUDITING.

ID Gender Age Web3 Experience Auditing Experience Description
U1 Male 31 60 months 48 months A PhD expertise in smart contract security, working at a web3 security company.
U2 Male 27 36 months 24 months A PhD candidate with a published paper on smart Ponzi scheme detection.
U3 Male 29 42 months 6 months A PhD candidate in blockchain analysis, interning at a web3 security company.
U4 Male 35 30 months 24 months A smart contract auditor at a web3 security company.
U5 Male 34 18 months 8 months A team leader of web3 projects at an internet company.
U6 Male 23 6 months 6 months A master student working on smart Ponzi scheme detection.
U7 Male 32 48 months 0 months A creator of a web3 community and a key opinion leader on Twitter.
U8 Male 25 36 months 0 months A PhD candidate expertise in Cryptography.
U9 Male 30 24 months 0 months A web3 investor who has invested in smart contracts.

U10 Female 27 18 months 0 months A web3 investor who has invested in smart contracts.
U11 Female 22 12 months 0 months An operations manager at a web3 security company.
U12 Male 25 10 months 0 months A web3 investor who has invested in smart contracts.
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