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Abstract—Existing dynamic weighted graph visualization approaches rely on users’ mental
comparison to perceive temporal evolution of dynamic weighted graphs, hindering users from
effectively analyzing changes across multiple timeslices. We propose DiffSeer, a novel approach
for dynamic weighted graph visualization by explicitly visualizing the differences of graph
structures (e.g., edge weight differences) between adjacent timeslices. Specifically, we present a
novel nested matrix design that overviews the graph structure differences over a time period as
well as shows graph structure details in the timeslices of user interest. By collectively
considering the overall temporal evolution and structure details in each timeslice, an
optimization-based node reordering strategy is developed to group nodes with similar evolution
patterns and highlight interesting graph structure details in each timeslice. We conducted two
case studies on real-world graph datasets and in-depth interviews with 12 target users to
evaluate DiffSeer. The results demonstrate its effectiveness in visualizing dynamic weighted
graphs.
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DYNAMIC WEIGHTED GRAPHS model the
temporal evolution of detailed relationships be-
tween entities in various applications such as so-
cial networks, financial networks, or communica-
tion networks. To analyze such dynamic weighted
graphs, a large number of dynamic graph visual-
ization techniques have been proposed, where the
essential research question is to investigate how to
visualize the temporal changes of dynamic graph
structures effectively [1], [20]. Most existing dy-
namic graph visualization approaches focus on
displaying graph structures (i.e., nodes and edges)
along the time via either animated diagrams or a
series of static charts (e.g., small multiples) [9]. It
is non-trivial to compare the differences between
weighted graphs [2]. To explore the temporal
evolution patterns of dynamic weighted graphs,
users need to mentally compare the differences
between multiple adjacent timeslices simultane-
ously, which is more challenging.

Different from prior studies for dynamic graph
visualization, we aim to achieve effective dy-
namic weighted graph visualization across a pe-
riod of time from a new perspective: explic-
itly visualizing the differences between adjacent
timeslices. Such a new perspective has clear ad-
vantages. As shown in Figure 1a, it’s hard to
quickly identify how the graph structures (e.g.,
edge weights) are exactly changing between two
adjacent timeslices through mental comparison.
When explicitly encoding the differences of edge
weight by the width and using red and blue
to represent the positive and negative changes
(Figure 1b), the temporal changes of dynamic
weighted graphs can be seen directly and do not
rely on the mental comparison. Figure 1c shows
another dynamic weighted graph that is different
from Figure 1a, but they have the same difference
sequence (Figure 1b).

However, it is non-trivial to leverage differ-
ences for dynamic graph visualizations. First,
graph differences can refer to different aspects of
graphs such as the changes of edge weights. How
to visualize such graph differences in a universal
way needs further exploration. Second, the tem-
poral evolution of dynamic weighted graphs relies
on understanding multiple graph differences of
continuous adjacent timeslices. It remains unclear
regarding how to visualize such multiple graph

Figure 1. Illustration of the importance of differ-
ences in dynamic weighted graph visualization.(a)
and (c) show two different dynamic weighted graphs.
(b) shows the graph differences between adjacent
timeslices of both (a) and (c), where the edge width
encodes the edge weight changes and the color
represents the trend of changes (i.e., red for an in-
crease and blue for a decrease). (b) provides a direct
perception of temporal changes in dynamic weighted
graphs.

differences over time and highlight the temporal
patterns like reoccurring and outliers [19]. Third,
despite the importance of graph differences, graph
structures themselves are also useful for a com-
prehensive interpretation of dynamic weighted
graphs. It is challenging to inform users of both
graph differences and original dynamic weighted
graph structures effectively.

In this work, we propose DiffSeer, a novel
difference-based approach for dynamic weighted
graph visualization (Figure 2). It can effectively
inform users of the overall temporal evolution
of dynamic weighted graphs and show the graph
structure details in individual timeslices. Specif-
ically, we present a novel nested matrix design
that overviews the graph differences over a pe-
riod of time and enables interactive inspection
of graph details on demand. Given the essential
information of dynamic weighted graphs is edge
weights [8], we leverage edge weight differences
to represent graph differences. A new node re-
ordering strategy is proposed to group nodes
in the nested matrix design, which can mani-
fest the overall temporal evolution patterns and
interesting graph structure details of individual
timeslices in a balanced manner. A difference
mask is integrated into the nested matrix design

2 © 2022 IEEE Published by the IEEE Computer Society IT Professional



Figure 2. Overview of DiffSeer : We focus on explicitly visualizing the differences between adjacent timeslices
to support the analysis of the dynamic weighted graph evolution over a long time. Specifically, we proposed
a nested matrix design, including (A) an overview matrix to provide a visual summary of differences and two
types (B, C) of detail matrices to enable interactive inspection of graph details on demand. An optimization-
based node reordering strategy is incorporated in the nested matrix design to group together nodes with similar
evolution patterns and highlight interesting graph structure details in each timeslice.

to enhance the perception of interesting temporal
evolution patterns. We conduct two case studies
on real-world dynamic graph datasets and in-
depth interviews with 12 expert users. The results
demonstrate the effectiveness and usability of
DiffSeer in informing viewers of the temporal
evolution of dynamic weighted graphs.

In summary, our main contributions include:

• We propose DiffSeer, a novel difference-
based dynamic weighted graph visualization
approach, for exploring the dynamic graph
evolution interactively, where a novel nested
matrix design is presented to show the tempo-
ral evolution of dynamic graphs with multiple
levels of details.

• We conduct two case studies on real-world
datasets and user interviews with 12 target
users to demonstrate the effectiveness and us-
ability of DiffSeer.

Related Work

Dynamic graph visualization has been ex-
tensively studied in the past decades. The ma-
jor dynamic graph visualization methods in-
clude animation-based and timeline-based ap-
proaches [9]. Animation-based approaches show
the temporal evolution through animated transi-
tions [14]. Timeline-based approaches visualize
dynamic graphs through a time-to-space mapping,
where the graph structure of each timeslice is
shown along a timeline [6], [8]. Most of these
approaches focus on displaying the graph struc-
tures in each timeslice directly. To identify the
temporal evolution patterns of dynamic graphs,
users need to mentally compare the changes or
differences between adjacent timeslices in the
animated graphs or between a sequence of static
graphs [4]. For dynamic weighted graphs, such a
process relies on users’ mental memory due to the
complex weight changes, hindering users from
effectively and quickly analyzing the temporal
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changes.
A few prior studies have also investigated

highlighting the removed or inserted edges and
nodes between two adjacent timeslices in small
multiples [3], [13] and animated transitions [7],
[11]. Archambault et al. [5] further performed
a user study on such methods and showed that
highlighting changing edges is helpful. However,
these studies focus on using color to indicate
whether an edge occurred or not and are unable to
reveal change details in dynamic weighted graphs
such as edge weight [8]. For dynamic weighted
graph, users need to understand both the edge
weight differences and the original graph struc-
tures. Previous studies have never explored lever-
aging detailed edge weight differences to display
the evolution of dynamic weighted graphs.

Different from prior studies, DiffSeer is a
novel difference-based visualization approach for
dynamic weighted graphs. It explicitly visualizes
the edge weight differences over time, and en-
ables systematic exploration of the temporal evo-
lution of dynamic weighted graphs with multiple
levels of details.

Background
In this paper, we focus on the undirected

dynamic weighted graph and give concrete defi-
nitions as follows. A dynamic weighted graph Γ
can be regarded as a sequence of graph snapshots
G in each timeslice:

Γ = {G1, G2, ..., GT} , (1)

where each graph snapshot Gi = (Vi, Ei) has
a different node set Vi = {v1, v2, ..., vN} and a
different edge set Ei = {e1, e2, ..., eM} in each
timeslice. Each edge em is defined as follows:

em = (u,w, v) ∈ Ei ⊆ Vi ×R+ × Vi, (2)

where u, v ∈ Vi are two nodes linked by em, w
denotes the weights of edges in the graph.

We define the node set V as all the nodes that
appear at least once throughout the whole time
range, and define the graph difference between
two adjacent timeslices of a dynamic weighted
graph as follows:

Diffi = (V,Di), (3)

where Di is the set of edges with weight changes
in the i-th timeslice. Diff i is intrinsically a

graph as well. Specifically, Di is defined as:

Di = {d1, d2, ..., dH} , 2 ≤ i ≤ T, (4)

where H is the total number of edges with
a weight change from Gi−1 to Gi, and each
changed edge dk is:

dk = (u,w′k, v), 1 ≤ k ≤ H, (5)

where w′k is the edge weight change of the k-th
edge between Gi−1 and Gi and can be positive or
negative. A positive edge weight change indicates
an increase of edge weight, while a negative one
indicates a decrease of edge weight.

Like existing dynamic weighted graph visual-
izations [20], [8], we focus on the changes of
edge weight, one of the important features of
dynamic weighted graphs. It is possible that some
nodes may also appear or disappear in a dynamic
weighted graph at some timeslices, which can be
indicated by the appearance or disappearance of
their associated edges. The dotted node in Fig-
ure 2a shows an example of node disappearance.

DiffSeer
We propose DiffSeer, a novel difference-based

approach for dynamic weighted graph visualiza-
tion. Its core component is a nested matrix design
(Figure 3B) to provide both an overview and
fine-grained details of edge weight differences. A
difference mask (Figure 3E) can be interactively
enabled to emphasize the significant changes, and
stacked bar charts (Figure 3b2) and area charts
(Figure 3b3) to overview the edge weight changes
at each timeslice and associated edge weight
change distribution of individual node respec-
tively. Besides the nested matrix design, we also
present a timeline view (Figure 3A) to enable a
temporal summary of the original dynamic graph.
It is achieved by projecting the graph structures at
each timeslice into one dimension and the offset
on the vertical axis can be a rough indication of
the changing intensity [19], providing a quick in-
sight into the entire period. A prototype system of
DiffSeer is available at https://diffseer.github.io/.

Nested Matrix Design
This section introduces the visual design and

the node reordering strategy of the nested matrix
design in detail.

4 IT Professional
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Figure 3. The DiffSeer interface consists of (A) a timeline view and (B) a nested matrix design including (b1) the
nested overview and detail matrices, (b2) a stacked bar chart, (b3) some area charts representing the overview
of changes in nodes weights, and (b4) a toolbar to provide some necessary interactions. The rows and columns
in the nested matrix represent nodes and timeslices respectively. (C) shows the nested matrix when an original
detail matrix (c1) and a difference detail matrix (c2) are unfolded in the overview matrix. (D) is the explanation
of each cell in the overview matrix. (E) shows the difference mask attached to (b5) in the overview matrix.

Nested overview and detail matrices. The
nested matrix design has two core parts: an
overview matrix (Figure 3b1) shows the graph
differences between adjacent timeslices over a
period of time to inform users of the temporal
evolution of dynamic graphs, and detail matrices
(Figure 3c1,c2) display the details of graph dif-
ference or original graph structure at individual
timeslices when a user double-clicks a timeslice
of the overview matrix.

Overview matrix. As shown in Equation 3,
graph difference can also be regarded as a type
of graph. To effectively visualize the overall
graph differences along time within the limited
space, we aggregate edge weight differences into
their connected nodes in the overview matrix,
which is an effective way of aggregation for
graph visualization [8]. The rows of the overview
matrix (Figure 3b1) represent graph nodes, the
columns correspond to different timeslices, and
each cell intuitively shows the weight changes
of all edges connected to one node in the cor-
responding timeslice. For each cell (Figure 3D),
we use a stacked-bar glyph to encode the number

of edges in the graph difference, i.e., the number
of edges with a weight change between two adja-
cent timeslices in the original dynamic weighted
graph. The height of the upper or bottom bars
of a glyph encodes the number of edges with a
positive or negative weight change, respectively.
The color scheme of bars refers to average weight
changes of all the edges connected to a node in
the graph difference, and we use a diverging red-
to-blue color scheme to encode it.

Detail matrix. To check the details of the
differences or the context in which the differences
occurred, we allow users to interactively unfold
the detail matrices of individual timeslices within
the overview matrix by double-clicking the cor-
responding timeslices, as shown in Figure 3C.
We use the matrix layout to visualize graph
details because the detail matrices can share the
same node order with the overview matrix to
help users maintain analysis continuity. The detail
matrix has two types: the difference detail matrix
(Figure 3c2) and the original graph detail matrix
(Figure 3c1). The difference detail matrix displays
the specific difference between adjacent times-
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Figure 4. The drawing procedure of difference mask :
(a) select nodes with significant changes, (b) highlight
nodes, (c) connect highlighted nodes in one timeslice,
(d) connect highlighted nodes cross timeslices.

Figure 5. Visual encoding of stacked bar chart (a)
and area chart (b) of each node. N is the number of
nodes in the graph.

lices, where the rows and columns both represent
nodes, and each cell represents a weight change
of an edge. Similar to the overview matrix, we
also use a diverging red-to-blue diverging color
scheme here. The original graph detail matrix
visualizes the graph structure in an individual
timeslice, allowing users to inspect the exact
graph structure details. A sequential gray-scale
color scheme is used to encode the original edge
weights.

Difference mask. To further facilitate an easy
exploration of dynamic weighted graphs, we pro-
pose a difference mask (Figure 3E) to emphasize
the temporal patterns of graph differences (e.g.,
outliers or repeated changes [19]). Specifically,
we highlight the nodes with a significant edge
weight change above a user-defined threshold
by using red and blue rounded rectangles (Fig-
ure 4b). Here a significant edge weight change
refers to either the average weight changes of

edges connected to a node or the total number
of edges with a weight change. Then, we use
paths to connect nodes with similar changes
within and between timeslices, respectively. For
one timeslice, we use vertical paths to join the
highlighted nodes of the same color in a column,
red for positive and blue for negative (Figure 4c),
indicating that these nodes have similar signifi-
cant changes. To emphasize the temporal patterns,
paths are also drawn between the columns with at
least one highlighted node. Some of the paths are
horizontal connecting the same highlighted nodes
of two columns to denote that similar changes
appear repeatedly, of which color depends on
whether the two nodes are positive or negative
(Figure 4d1−4). In addition, when the number of
consecutive columns with no highlighted nodes
exceeds a predefined threshold, no path is drawn
between them because this may imply a stable
period (Figure 4d8).

Stacked bar chart and area chart. To provide
the overall context, we add a stacked bar chart
and some area charts to the nested matrix design.
The stacked bar chart (Figure 5a) presents the
distribution of the changed edges’ number over
time, which shares the same timeline as the
overview matrix, and the height of the red part
encodes the number of the positive edges while
the blue part encodes the negative edges. The area
charts (Figure 5b) present the distribution of the
changed edges’ number of each node during the
selected period, which can imply which nodes
always have many edges with a weight change.

Node Ordering Strategy
The node order of a matrix-based design can

directly determine the visualization effect [17]. In
nested matrix design, overview matrix and detail
matrices share the same node order, so a proper
node order is of vital importance. Figure 6a
shows the overview matrix and detail matrices
in an alphabetical node order. We can discover
some patterns in the overview matrix, such as the
timeslices with significant changes, but it is hard
to get deep insights like some nodes with similar
patterns. As for detail matrices, it is hard to figure
out any interesting patterns beyond the value of
each cell, such as clusters and subgroups.

To this end, we propose a node reordering
strategy, which can simultaneously provide a sin-
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Figure 6. The figures showcase the nested matrix
design with different node orders to show the effec-
tiveness of our node reordering strategy. (a) order by
alphabetical. (b) order by the distance between rows,
mainly designed for the overview Matrix. (c) order by
spatial auto-correlation, mainly designed for the detail
matrix. (d) order by considering both overview matrix
and detail matrix equally.

gle order that works well for both overview ma-
trix and unfolded detail matrices. Users can ad-
just the reordering strategy’s priority for specific
analysis needs. Figure 6b,6c shows the overview
matrix and detail matrices after node reordering,
respectively. Figure 6d shows the nested matrix
after node reordering by treating the detail matrix
and the overview matrix equally. Compared to
Figure 6a, each of the ordered matrices can pro-
vide some additional insights, such as some nodes
with similar changing patterns (Figure 6b1), two
nodes that have little relationship to other nodes
(Figure 6c1), and a group of nodes that have
stronger connections within them (Figure 6c2)
but weaker connections with other nodes (Fig-
ure 6c3). Further, the node reordering by equally
considering both detail matrix and overview ma-
trix can also preserve their own visual patterns as
much as possible (Figure 6d).

Most existing methods reordered the matrix
by calculating the inner-rows distance of the
matrix and then solving it as a traveling sales-
man problem (TSP) [10]. Our strategy follows
a similar framework, but the difference is that
we need to find an appropriate order for different

types of matrices simultaneously. Specifically, we
augmented the reordering method using Moran’s
I [18], which is designed for unweighted and
undirected dynamic graphs, to work for weighted
dynamic graphs. Maximizing Moran’s I can be
translated into minimizing the similarity Is be-
tween two adjacent rows:

I =
∑n−1

a=1Is(M,ρ (a) , ρ (a+ 1)), (6)

where ρ (a) denotes the a-th row of matrix M (n
rows) in any node order and Is ∈

[
− 1

n−1 ,
1

n−1

]
.

We normalize the distance between two rows
as Ddetail. For the overview matrix, since the
spatial auto-correlation index can not work in
the condition that the rows and columns are not
symmetric, we only consider the distance between
the two rows based on similarity. The inner-row
distances are calculated with Manhattan distance
as Doverview.

After getting the distances between rows of
different types of matrices, the final node order
should be calculated based on the user-defined
weight to satisfy the user’s preference. We nor-
malize the distance matrices of both the detail
matrices and the overview matrix to the same
scale and then set an adjustable weight parameter
α ∈ [0, 1] to capture the user’s preference, and
the final inter-row distance D is defined as:

D = αDoverview + (1− α)Ddetail, (7)

which is used as the input of the leaf order
algorithm [12]. It can calculate the final node
order by constructing a hierarchical clustering on
node rows according to the distance matrix.

When α is adjusted to 1, the reordering al-
gorithm only focuses on the overview matrix
(Figure 6b). On the contrary, when α is 0, nodes
are reordered only based on Detail Matrices (Fig-
ure 6c). When α is set to a value between 0 and
1, such as 0.5, an overall suitable order may be
obtained as shown in Figure 6d.

Interactions
DiffSeer enables rich interactions to allow

users to smoothly analyze and explore dynamic
weighted graphs. Users can brush the time range
of their interest in the timeline view and explore
the details in the nested matrix view. DiffSeer
provides users with the flexibility of configuring
the visual design, such as setting the reordering
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weight and the difference mask threshold. More
details of interactions can be found in the proto-
type system.

Case Study
We conducted two case studies to demonstrate

the effectiveness of DiffSeer on real-world dy-
namic weighted graph datasets, which are col-
lected from the domains of finance and social net-
work. Two expert users (U1, U2) were involved in
the case studies, and they have attended our user
interviews and learned how to use DiffSeer. They
were asked to use DiffSeer to explore dynamic
weighted graphs. Their exploration procedures
and the corresponding findings were recorded. We
used two dynamic weighted graphs whose details
are as follows:

Sector Index Correlation Network (SICN). We
collected time-series records of 28 sector indices
in the Chinese stock market1. It consists of the
stock trading records from June 3, 2010 to Oc-
tober 18, 2021 (2,761 timeslices), which covers
the time period of the COVID-19 outbreak. We
calculated the Pearson correlation between any
two indices each day to model the association
between different indices [15]. The sector indices
are regarded as the nodes, and the correlations
between each pair of sector indices are regarded
as the edge weight.

Rugby Team Tweet Network (RTTN). This
dataset contains more than 3,000 tweets between
12 teams in the Guinness Pro12 competition from
2014 to 2015 [16]. Each team is regarded as a
node, and the edge weight denotes the number of
tweets between two Rugby teams. There are 12
nodes and 329 timeslices in total.

Case 1: Impact of the COVID-19 on China
Stock Market

U1 is a financial expert, and he was quite
interested in the impact of COVID-19 on the
correlation between different sector indices in
China stock markets. So he brushed the period
after the COVID-19 outbreak (i.e., from January
17, 2020, to March 13, 2020), as shown in
Figure 7. From the overview matrix, U1 gained
a quick understanding of the overall temporal
evolution of the sector correlation network across

1https://www.joinquant.com

Figure 7. Overview matrix of the sector index corre-
lation network dataset after the COVID-19 outbreak.
(a) and (c) show a significant increase in the sector
correlations. (b) and (d) show that several sectors
have weakened their connection with others.

35 trading days. Specifically, he quickly noticed
two periods with a significant increased in the
sector correlations: the Chinese New Year period
of 2020 and around early March, as indicated by
the dense red bars in Figure 7a and Figure 7c.

Chinese New Year of 2020. With DiffSeer,
U1 easily noticed that there were significant in-
creases of edge weights for many nodes before
Chinese New Year (Figure 7a), indicating a global
correlation increase among different sectors. At
the beginning of the outbreak of COVID-19, it
was observed that Node LS (Leisure Service)
first experienced a significant negative change
(Figure 7a1), followed by the blue difference
mask between Node HC (Health Care) and Node
TA (Textile & Apparel) (Figure 7a2). It makes
sense because Leisure Service (LS), a crowd-
intensive sector, was first affected by the COVID-
19 pandemic, and (HC) and (TA) declined in cor-
relation with other sectors due to the shortage of
treatment, masks, and other protective resources.
U1 unfolded two original graph detail matrices
to check the context at the beginning and end
of this period. He found several clusters before
the outbreak (Figure 7M1), but almost all the

8 IT Professional
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nodes were connected after the Chinese New Year
(Figure 7M2), indicating that these sectors were
responding in a similar manner to the outbreak.

Work and production resumption. U1 further
identified several nodes connected by the blue
difference mask in Figure 7b. Except for these
nodes, the edge weights of all the other sector
nodes did not change very much during this pe-
riod. According to U1, the reason for this pattern
was a succession of national policies aimed at
these changed sectors, i.e., these nodes all had
similar changing patterns after the introduction
of the policy to resume work and production.
Observing the detail matrix after the resumption
(Figure 7M3), he found that the color of these
rows was lighter than those in M2 and confirmed
that the work and production resumption did
make some sectors less relevant to others.

Stock market crash. Next, U1 wanted to
analyze the significant correlation increase in Fig-
ure 7c. He unfolded the difference detail matrix
(Figure 7M4) by double-clicking the correspond-
ing timeslice. U1 found only an apparent blue col-
umn (row) of Node TA appearing in a wide range
of red and noticed a negative difference mask on
Node TA and Node LS after that day (Figure 7d).
U1 mentioned that the global increase of edge
weight may result from the stock market crash,
and the interesting pattern on Node TA and Node
LS is owing to the policy support that kept these
sectors isolated from the negative influence of the
whole market.

By using DiffSeer, U1 concluded that the
COVID-19 pandemic has had a great impact on
the industry association network, with significant
fluctuations in closely related sectors. U1 said that
gaining these insights would have taken much
longer without using DiffSeer.

Case 2: Tweet Interactions between Rugby
Teams

U2 has a background in social network anal-
ysis and is curious about the evolution of the
Rugby team tweet network. With DiffSeer, U2
found interesting Tweet interaction patterns be-
tween Rugby teams from April 2015 to June 2015
(Figure 8).

Similar highlighted shapes. In the overview
matrix, U2 found that some similar highlighted
shapes were always separated by several columns

Figure 8. Dynamic evolution of the rugby team tweet
network dataset from April to June. (a) and (b) show
some significant changes occurred during the game,
but few changes occurred after the game. (c) shows
the changed edges’ number of two nodes increased
continuously before the finals.

with almost no changes, where positive edge
weights (red rectangles) often appear before neg-
ative edge weights (blue rectangles), as shown in
Figure 8. It indicates recursive repeats of abrupt
increase followed by abrupt decrease of edge
weights. To identify the reason behind it, U2
checked the schedule of the Rugby competitions
for these teams 2. He found that these patterns
are extremely relevant to the rounds of the com-
petitions, i.e., there is a significant increase of the
tweets between different Rugby teams on the start
date of each round of competition, which would
cease after the competition. To further check the
interaction details, he unfolded two difference
detail matrices in one of the highlighted shapes
(Figure 8a) and saw that two pairs of nodes
were dark red in Figure 8M1 but dark blue in
Figure 8M2. It turned out that they were exactly
the four teams participated in the two matches
on that day, indicating the abrupt increase or de-
crease of interaction mainly come from the teams
involved in the competition. Then, he compared
the original graph detail matrices of a game day
(Figure 8M3) and a day without a competition
(Figure 8M4). He confirmed that the stable period
(e.g., Figure 8b) was due to almost no tweets on
days without games.

A pre-game hype. In Figure 8c, U2 found
that the red bars of the two nodes kept increasing
from May 27 to May 30, indicating an increas-

2https://en.wikipedia.org/wiki/2014-15 Pro12

August 2022 9

https://en.wikipedia.org/wiki/2014-15_Pro12


Department Head

ing interaction between the two teams and other
teams. but they suddenly switched to blue bars
on June 1st. By reordering nodes and comparing
difference detail matrices, U2 found an obvious
spread pattern of the two nodes, as shown in
Figure 8M5, which shows that more and more
teams started to have tweet interactions with these
two teams. According to the schedule, May 30
was exactly the final round date between the two
teams, so U2 inferred that this pattern probably
results from the pre-game hype, which is also why
the connections between teams decreased rapidly
after the finals.

Overall, with DiffSeer, U2 can figure out the
deep correlation between the competition sched-
ule and the evolution of the tweet interactions
between Rugby teams.

User Interview
We conducted semi-structured interviews with

12 expert users who work on network data analy-
sis and visualization to evaluate the effectiveness
and usability of DiffSeer.

Participants and Apparatus
We invited 12 target users (U1-U12) to partici-

pate in the interviews. U1 and U2 are researchers
from financial and internet companies, and U3-
U12 are students from several universities (two
doctors and eight masters). The participants (eight
males and four females, aged 25 to 32, with
normal vision) are engaged in network data anal-
ysis or visualization. Four (U1-U4) have more
than five years of research experience, and others
have at least one year. Due to the COVID-19
pandemic, our interviews with 7 participants were
conducted online via Zoom, where they used their
own computers to access DiffSeer deployed on a
Cloud server. The interviews with the remaining
participants were conducted offline on a desktop
with a 23.8-inch 1920 x 1080 monitor.

Datasets and Tasks
The SICN and RTTN datasets were used in

our user interviews. A small period of the RTTN
dataset was used for the tutorial, while the other
period of the RTTN dataset and the whole SICN
dataset was used for the exploration by partici-
pants. During the interviews, the participants were

asked to complete the following five tasks to fully
explore the dataset with DiffSeer.

T1. Find the changes occurring over time.
T2. Describe the type of changes.
T3. Find repeated changes in this period.
T4. Find the nodes with similar change pat-

terns over time.
T5. Find the nodes with similar patterns in

one timeslice.
T1 and T2 are designed to test whether the

nested matrix design can accurately represent
differences and help participants quickly identify
graph structures that have changed over time. T3
is used to guide participants to discover some
temporal patterns of differences with DiffSeer
since the repetition of changes is one of the major
temporal patterns [19]. T4 and T5 aim to evaluate
the usefulness of our node reordering strategy.
Since these tasks are subjective for users, we only
use them to provide guidance but do not discuss
the accuracy and time consumption.

Procedure
During the interview, we first introduced Diff-

Seer to the participants. Then, we went through
an example usage scenario on the RTTN dataset
to show how to use DiffSeer to explore a dynamic
weighted graph. Then, the participants were al-
lowed to explore the RTTN dataset freely to make
themselves familiar with DiffSeer. The tutorial
above lasted about 20 minutes. After that, they
were invited to use DiffSeer to analyze either
the RTTN dataset of another time period or the
SICN dataset and finish the above tasks. Partic-
ipants could freely explore the dataset until they
felt that the tasks had been well finished. Their
comments and suggestions were recorded. After
that, we further invited them to finish a post-
study questionnaire, including the set of questions
in Table 1. Nine closed-ended questions (Q1-Q9)
were designed to evaluate the usability (Q1-Q4)
and effectiveness (Q5-Q9) of DiffSeer, and two
open-ended questions (Q10, Q11) were used to
gather suggestions from participants. Overall, the
whole interview lasted about 60 minutes for each
participant.

Results
Participants always got satisfactory answers

for all tasks within 15 minutes, and we sum-
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Table 1. The questionnaire for user interview. Q1-Q9 are
closed-ended questions (Q1-Q4 for usability and Q5-Q9
for effectiveness). Q10-Q11 are open-ended questions.

ID Questions

Q1 Is DiffSeer easy or hard to learn?
Q2 Is DiffSeer easy or hard to use?
Q3 Is the visual design easy or hard to understand?
Q4 Is the interaction helpful or not in the analysis

process?

Q5 Is it easy or hard to understand differences across
timeslices with the overview matrix?

Q6 Is it easy or hard to identify nodes with significant
changes in the difference mask?

Q7 Is it easy or hard to check connection changes in
each timeslice by unfolding the detail matrices?

Q8 Is the node reordering strategy helpful or not to
enhance the visual pattern (like clustering) of the
nested matrix?

Q9 Overall, is the proposed method helpful or not
for identifying the temporal evolution of dynamic
weighted graphs?

Q10 What are the advantages of the proposed method?
Q11 Which part of the method can be improved? How?

Figure 9. User interview results. Q1-Q4 is for usabil-
ity, and Q5-Q9 is for effectiveness.

marized the participants’ standard of tasks as
follows. Firstly, participants found the changes
over time by observing the blue/red cells in
the overview matrix (T1). They checked both
overview and detail matrices and described the
changes by the changed edge number and weight
(T2). For T3, they found some repeated changes
linked by difference mask. For T4 and T5, they
reordered nodes and found nodes with similar
changes gathering together.

Figure 9 summarizes the participants’ re-
sponses to our post-study questionnaire. Overall,
both the usability and effectiveness of DiffSeer
are highly rated by participants. They agree that
the DiffSeer is convenient and efficient for explor-
ing the temporal evolution of dynamic weighted
graphs. However, two of them thought that the
visual design might not be friendly for a novice
to understand. The detailed comments from par-
ticipants are summarized as follows:

Usability. All participants confirmed that they
could easily learn and use DiffSeer, and the visual
designs are intuitive. Some of them have used
small-multiples or animation to explore dynamic
weighted graphs before, and they confirmed that
they can find changes of edge weight more
quickly and accurately with DiffSeer. U1 men-
tioned that “Since matrices are very common in
graph analysis, I can easily understand the nested
matrix design.” U5 commented, “It takes me some
time to learn the meaning of Difference Mask, but
it is quite useful after understanding it.” In terms
of the interaction, the participants appreciated
the existing interactions of DiffSeer, which were
confirmed to be beneficial and could satisfy the
analysis requirements.

Effectiveness. Overall, all participants praised
the effectiveness of DiffSeer in exploring the
dynamic weighted graph evolution. They pointed
out that the nested matrix design can help them
quickly identify dynamic graph evolution charac-
teristics, such as abrupt significant edge weight
increases and recurrent edge weight changes.
They said that it is more effective than the ex-
isting methods like small multiples. U3 pointed
out that “With the node reordering strategy, the
detail matrix can be more helpful to confirm
the graph details within one timeslice. But as
for the weight of node reordering, I almost only
chose 0 or 1 to focus on one matrix type since
a median value is hard to interpret.” However,
U2 said that the adjustable weight feature helped
him find a balance to analyze multiple matrices
simultaneously.

Discussion
This section further discusses the generaliz-

ability, time range, and node number of DiffSeer.
Generalizability. We have shown the general-

izability of DiffSeer by two case studies on real-
world datasets with different characteristics, and
the results can prove that DiffSeer is useful for
different types of dynamic weighted graphs that
need to be analyzed for changes. Our method
can also support the dynamic unweighted graphs
by considering the presence or absence of edges
as an edge weight of 0 or 1. Although DiffSeer
does not focus on the directed dynamic graphs,
we can just encode one of the out-degree or in-
degree in the overview matrix and reorder nodes
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with inner-row similarity instead of the auto-
correlation index, then DiffSeer can still work as
expected.

Scalability. DiffSeer has good scalability in
terms of the time range to be explored. The
overview matrix can help explore more than one
thousand timeslices simultaneously since the col-
umn width can be narrow enough as long as users
can identify it. The time range can be further
extended by brushing on the timeline view.

Conclusion and Future Work
We propose DiffSeer, a dynamic weighted

graph visualization approach, by explicitly visu-
alizing the differences on edge weight between
adjacent timeslices, which incorporates a novel
nested matrix design, a new node reordering
strategy, and a rich set of interactions to help
users fully understand the temporal evolution of
dynamic graphs. For evaluation, we conduct two
case studies on real-world datasets and in-depth
interviews with 12 target users, and the results
demonstrate that DiffSeer is useful and effective
in visualizing dynamic graphs.

In future work, we plan to characterize dif-
ferences from more perspectives, such as the
removal or addition of nodes, to support broader
analysis requirements. It is also interesting to fur-
ther explore how the proposed difference-based
visualization approach can be extended to the
visualization of other datasets, like high dimen-
sional time-series data.
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