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ABSTRACT
Block-based programming environments have been widely used
to introduce K-12 students to coding. To guide students effectively,
instructors and platform owners often need to understand behav-
iors like how students solve certain questions or where they get
stuck and why. However, it is challenging for them to effectively
analyze students’ coding data. To this end, we propose BlockLens, a
novel visual analytics system to assist instructors and platform own-
ers in analyzing students’ block-based coding behaviors, mistakes,
and problem-solving patterns. BlockLens enables the grouping of
students by question progress and performance, identification of
common problem-solving strategies and pitfalls, and presentation
of insights at multiple granularity levels, from a high-level overview
of all students to a detailed analysis of one student’s behavior and
performance. A usage scenario using real-world data demonstrates
the usefulness of BlockLens in facilitating the analysis of K-12 stu-
dents’ programming behaviors.

CCS CONCEPTS
• Human-centered computing → Visual analytics; • Social
and professional topics → K-12 education; Computational
thinking; Software engineering education.
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1 INTRODUCTION
Block-based programming (programming by dragging and drop-
ping blocks) has been widely used to ignite K–12 students’ interest
in coding and foster their computational thinking skills [21]. Com-
pared to text-based programming, block-based programming is
more suitable for K-12 students since it reduces the cognitive work-
load associated with the programming syntax. To effectively guide
students, instructors and platform owners often need to explore
and understand student coding behaviors. For example, how do
most students solve certain questions? Where do they get stuck and
why? To answer these questions, the detailed steps of how students
are dragging and dropping the blocks need to be analyzed instead
of just the final blocks submitted. However, it is challenging for
instructors and platform owners to analyze and extract meaningful
insights from the raw data, since raw coding log data (e.g, drags
and drops) are often large in scale and difficult to interpret.

Many prior studies about programming behavior analysis [4,
15] focus on solution analysis instead of procedure analysis. For
example, OverCode [4] uses the variable renaming the abstract
syntax tree methods to cluster different correct solutions in text-
based programming, which is not sufficient for understanding how
students make mistakes.

Some studies have analyzed the programming procedures, but
they focus on the problem-solving strategy instead of the fine-
grained steps. In terms of text-based programming, Piech et al. [17]
took several screenshots during students’ programming process and
clustered the images to analyze the different strategies students use.
PathViewer [24] analyzes how students pass predefined test cases.
In terms of block-based programming, many studies [6, 8, 9, 11, 23]
propose computational ways tomeasure and cluster different events
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that happen during the programming process. For example, Kessel-
bacher and Bollin [8] calculated the relationship between different
event types (e.g., using a loop or not) in block-based programming
and student success. However, none of these studies can provide a
fine-grained step-wise level analysis, which is essential for instruc-
tors or teachers to analyze common mistakes or critical steps and
give accurate and personalized support. BlockLens enables this by
proposing a method of identifying important outcome-associated
code snapshots within a sequence of step-wise snapshots and classi-
fying them as being associated with either success (such snapshots
are called checkpoints in this paper) or failure (called warning signs).

Information visualization has proved to be an effective way to
analyze large-scale student learning data. Some of these visual-
izations focus on individual learning path analysis. For example,
iSnap [18] and Dr. Scratch [14] propose visual systems aimed at
individual students, rather than providing educators with analytical
results from the perspective of common problem-solving strate-
gies among multiple students. Others analyze the behaviors of a
group of students. They have demonstrated their advantages for
teachers’ observation and analysis of students’ behavior in MOOC
platforms [1, 13, 20], interactive online question pools [25, 26] and
online exams [12]. However, they cannot be directly applied to
block-based programming questions due to the questions’ different
characteristics and interactions. For example, as opposed to math
questions [25], block-based programming questions can have mul-
tiple solutions. Inspired by these studies, we proposed a modified
Sankey diagram with contextual information (e.g., programming
blocks, time) to demonstrate the important outcome-associated
code snapshots and step-wise transitions for instructors to analyze
the fine-grained programming behaviors of students.

We propose BlockLens, a novel visual analytics system that
allows educators and platform owners to view the Block-based
Online Coding behaviors of K–12 students through an interac-
tive Lens. We first formulate the process of solving a block-based
programming question as a sequence of code modifications (i.e.,
moving, creating, deleting, or modifying blocks). Then we generate
the code snapshot after each code modification. Inspired by the
methods for analyzing event sequences outlined by Gotz et al. [5],
we identify and classify key snapshots as checkpoints and warning
signs. Such checkpoints and warning signs enable a meaningful
characterization of students’ programming progress and subse-
quently facilitate the visual analysis of problem-solving strategies.
The interface of BlockLens consists of four views. Question Selec-
tion View allows instructors to see key statistics for each question,
and select a question they would like to focus on. Path Summary
View provides an overview of all students’ progress on the selected
question, as well as the checkpoints, warning signs, and frequent
snapshots which appear in the students’ answers. Student View
groups students by their progress on questions according to the
number of checkpoints and warning signs that appear in their
code snapshots. Finally, Sequence View shows the detailed snapshot
sequences. The main contributions of this work are as follows:

• We derive the key design requirements of analyzing K-12
student coding behaviors in block-based programming envi-
ronments based on our interview with domain experts.

• We propose BlockLens, a novel visual analytics system for in-
teractively monitoring and analyzing student programming
behaviors at multiple levels of details.

2 DATASET
Anonymized event sequence data was collected from a bilingual
e-learning platform where K–12 students complete basic coding ex-
ercises using Scratch 3.0, a block-based programming language [19].
Our dataset consists of data from robot programming questions. In
these programming questions, students are asked to instruct the
robots to finish some tasks such as collecting items. After submitting
the code, a simulator runs, showing an animation of the robot’s
response to the student’s program. The score is then computed
based on whether the code passes the test case.

3 REQUIREMENT ANALYSIS
To gain an in-depth understanding of the requirements and chal-
lenges of understanding student coding behaviors, we worked
closely with four educational experts (E1–E4) who have 5–20 years’
experience in designing and teaching K–12 computational think-
ing curricula. We had a series of online meetings with them and
recorded their opinions towards developing a visual analytics sys-
tem. Then all authors discussed and summarized five major require-
ments for analyzing students’ coding behaviors (R1–R5).

R1. Monitor students’ overall performance on a certain
question. An overview of students’ performance is desired by
the experts for easy selection of detailed questions. The overview
should present important performance metrics to demonstrate
whether students have been struggling with a question.

R2. Identify the problem-solving behavior and strategies
of groups. The experts stated that it is not easy for teachers to
observe each student’s behavior and learn common reasons for
success or failure. As a result, they suggested that our system should
allow educators to differentiate between the coding behavior of
different groups of students, such as two groups who reached a
correct answer using different strategies, and show how the groups
are distributed based on multiple performance metrics.

R3. Identify checkpoints and warning signs. E1–E3 believe
that identifying positive or negative key points within students’
problem-solving paths is helpful for educators to provide assistance
to students. Thus, our system should be able to identify such key
points and present them to teachers intuitively.

R4. Display a summary of problem-solving paths. All the
experts believed a visual summary of the problem-solving paths
taken by multiple students was needed. This would allow educators
to monitor and compare the coding behavior of multiple students.

R5. Show an individual student’s detailed problem-solving
process. E4 pointed out an educator’s need to view the detailed
information (e.g., a students’ actual code) and further understand
how they are doing on a question or support them. Thus, the de-
tailed sequence of coding steps should be available in our system.

4 IDENTIFYING KEY SNAPSHOTS
Since the block-based programming questions allow students to use
and arrange blocks freely, the quantity of possible code snapshots



BlockLens Conference’17, July 2017, Washington, DC, USA

Figure 1: The visual analytics dashboard. (A) Question Selec-
tion View allows users to select questions, (B) Student View
facilitates the explorat. ion of student performance in terms
of different metrics, (C) Path Summary View summarizes
the paths and snapshot transition information of multiple
students, and (D) Sequence View shows complete student
snapshot and event sequences.

is large. Thus, it is not feasible to present all observed snapshots to
instructors and platform owners within the limited screen space
available. To handle this issue, we propose to identify key snapshots
that are more meaningful and interesting (R3). These key snap-
shots are used in both Student Checkpoint–Warning Plot and Path
Summary View to inform instructors and platform owners of the
interesting code snapshots (see Section 5). In this section, we will
introduce how the key snapshots are identified and classified.

In the first step, we tabulate sequences of snapshots, where each
snapshot is an event. Inspired by Gotz et al. [5], we applied the Chi
square statistic with Yates’s correction to evaluate whether a snap-
shot is strongly associated with the final result of the question. Such
snapshots are considered to be key snapshots. However, the method
does not tell us whether the key snapshots are associated with suc-
cess or associated with failure. To determine this, we calculate the
odds ratios [22] with Haldane-Anscombe correction [7] for these
key snapshots. This allows us to separate checkpoints (associated
with success) from warning signs (associated with failure).

In practice, the identified checkpoints are significant common
steps that students may take in a correct solution, while the warning
signs are a strong indicator that does not lead to a correct solution.
In addition, since checkpoints are markers of success and warning
signs are markers of failure, plotting warning sign count vs. check-
point count separates the students who got the question correct
from those who did not, and can further group them into smaller
subdivisions based on how many checkpoints/warning signs their
snapshot sequences contain.

5 VISUAL DESIGN
BlockLens consists of four views: Question Selection View, Path
Summary View, Student View, and Sequence View.

Question Selection View. Question Selection View (Fig. 1A)
allows users to select a question to inspect within the other views
(R1). To facilitate question selection, simple and intuitive visual-
izations of three key statistics are provided for each question. The
proportion of students who attempted a given question who got
the question correct, i.e., the question’s success rate, is shown using
a progress bar-style visualization. The average number of steps is
represented using a unit visualization [16], wherein each rectangle
represents a step. Finally, the average time taken is represented
using a clock-inspired [2, 3, 10] unit visualization.

Student View. Student View (Fig. 1B) shows how students are
distributed based on performance metrics (R2, R3). It contains a
student checkpoint–warning plot and two distribution plots.

The student checkpoint–warning plot is a unit visualization
showing groups of students with different numbers of key snapshots
that are identified using the algorithm introduced in Section 4 (R2,
R3). The motivation of applying unit visualizations is that they
enable the effective identification of outlying students within a
group [16]. The plot haswarning count on the y-axis and checkpoint
count on the x-axis. Within the plot, green points represent students
who got the question correct; orange points represent students who
did not. The size (area) of each point encodes the student’s step
count. The interactive plot operates in two modes. To facilitate easy
selection of both single student and multiple students (R2, R5), we
allow the teachers to switch between “select individual” and “select
group” modes. When the teacher selects a student in this view,
either the student or the entire group that student belongs to will
be shown in the Sequence View according to the mode. Additionally,
in “select group” mode, the group’s transition behaviors are also
highlighted in Path Summary View.

We also include two distribution plots below the student check-
point–warning plot, one for time taken from start to submission
and one for step count. For both, we overlay the distribution curves
(generated using Kernel Density Estimation 1) of students who got
the question correct versus those who did not (R2).

Path Summary View. Path Summary View (Fig. 1C) consists
of a Sankey-based visualization where each node represents a code
snapshot and the links represent one-step transitions between two
snapshots (R2, R4). The width of each link represents the num-
ber of transition instances. The nodes (snapshots) are arranged in
columns from left to right according to their length in the number
of blocks. Snapshots that appear frequently and/or are identified as
checkpoints or warning signs (R3) (see Section 4), which we call
keyframes, are shown in their entirety (all code blocks displayed).
Other snapshots are shown using a compact representation which
only shows the number of blocks within the snapshot. We use
Sankey diagrams with circular links 2 to account for links between
nodes in the same column and links going “backwards” from right
to left across columns. A backwards (right-to-left) link occurs when
a student deletes blocks, resulting in a snapshot that has fewer
blocks than the previous snapshot (and is thus in a column further
to the left). To avoid visual clutter, we only highlight the starts
and ends of circular links between nodes in the same column by
setting the opacity of all other parts of the links very low, and we

1https://en.wikipedia.org/wiki/Kernel_density_estimation
2https://github.com/tomshanley/d3-sankey-circular/
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label the sources and destinations of the nodes. To represent code
snapshots, we show code blocks as color-coded rectangles placed
within a larger rectangle representing the coding area. Unconnected
groups of blocks are separated with a gap. A short description is
displayed within each code block, as are shadow blocks (i.e., “block-
within-a-block”) and their values. The type of a given snapshot is
encoded using the fill and stroke of the rectangle representing the
coding area. Green snapshots are checkpoints; orange snapshots are
warning signs. Other snapshots are grey, and any snapshots with a
border are the ones that occur frequently in snapshot sequences.

Finally, a step count distribution bar is included on every snap-
shot visualization (except for those marked “other”). The step count
distribution bar is a horizontal stacked bar chart showing the pro-
portion of instances in which the snapshot in question appeared in
each quartile of steps within a student’s snapshot sequence.

Sequence View. Sequence View (Fig. 1D) displays the complete
snapshot sequences, as well as the events linking each snapshot,
of any students selected in Student View or Path Summary View
(R5). The snapshots are similar to those in Path Summary View,
but have two key differences: the step count distribution bar is
not included, and “other” snapshots are shown in full, unlike in
Path Summary View. These differences align well with Sequence
View’s purpose, i.e., showing the complete problem-solving paths of
individual students, instead of only a summary of multiple students.

6 USAGE SCENARIO: IDENTIFYING A
COMMON PROBLEM-SOLVING STRATEGY

In this usage scenario, the user uses BlockLens to explore a question
and identifies a common strategy for solving it.

The user first browses all questions using Question Selection
View (Fig. 1A). Then he identifies Question 1_6 as an interesting
question since the correct rate of the question is moderate. The
correct rate indicates that some students may meet difficulties while
others can finish it without problems. As the result, the user decides
to conduct an in-depth analysis of the problem-solving behaviors.

The user then looks at Student View. Looking at the step count
distribution plot, the user sees a narrow peak in the green distribu-
tion curve at close to 5 steps (many students in a narrow range), but
a much shorter peak further to the right shows a few students took
>10 steps. On the other hand, the step counts of students who get
the question wrong fall in a wider range, and many students submit-
ted their answers very early, perhaps indicating that the students
meet difficulties in the early stage. The user then carefully observes
the student checkpoint–warning plot. There are many more green
points (correct students) to the right of the plot, which suggests the
presence of more checkpoint instances is strongly correlated with
success. Furthermore, the presence of a warning sign is a strong
indicator of failure. Looking at Path Summary View, the user ob-
serves the warning sign usually appeared during the first half of the
problem-solving process, such that it could act as an early warning
sign (see the circled step count distribution bar in the right part of
Fig. 2), which matches his findings from the step distribution plot.
He also observes that most correct students appeared to have gone
from Frequent (1) to Checkpoint (2) to Checkpoint (5) to Solution
(8). Back in Student View, the user selects the group of students with
three checkpoint instances using the Checkpoint–Warning plot. All

Figure 2: The user selects the group of students (circled) who
have 3 checkpoint instances and no warning signs. These
students’ transitions are highlighted in Path Summary View,
revealing that most of them took a common path to the
solution. Arrows and the green check mark highlight the
common strategy that leads to a correct answer.

the points in the group are green (all correct). Upon doing so, the
user notices that the path from (1) to (2) to (5) to (8) is highlighted,
and that most of the people in this group have followed this path,
which can be viewed as a common strategy. On the other hand, the
presence of the warning sign indicates that a student has deviated
from the recommended steps, and almost all students with warning
sign instances got the question wrong. Finally, in Sequence View,
the user sees all paths in detail and confirms the common strategy.

This usage scenario confirms the usefulness of BlockLens. First,
our key snapshot detection and classification algorithm can suc-
cessfully extract the snapshots that are closely associated with the
final result. This can help the instructors to notice common errors
and also provide early intervention. Second, the visual analytics
dashboard provides a convenient and efficient approach for instruc-
tors to select questions and then conduct an in-depth analysis. They
can identify common problem-solving strategies easily and offer
targeted help to students.

7 DISCUSSION
Our usage scenario demonstrates the effectiveness of our system.
However, we also identify some areas worth discussing. In this
section, we discuss potential limitations and points to consider
including the generalizability and scalability of the system.

Generalizability. Although our prototype system focuses on
questions using Scratch, we expect our method to be generalizable
to other block-based programming environments, e.g., those based
on Snap! 3 or Blockly 4. The checkpoint and warning sign identifica-
tion methods used are even more widely generalizable. They can in
principle be applied to any event sequence with a binary outcome
(e.g., success vs. failure). BlockLens is not designed for completely
open-ended project-based coding without any right or wrong an-
swers, such as projects where block-based programming is used
to make animations or games. Additionally, the current prototype
supports a binary correct/incorrect scoring scheme. In cases where
there are multiple possible scores but there is a clear divide between
low and high scores, scores could be thresholded and categorized as
high or low. Fully generalizing to multiclass scoring systems would
require modifying the algorithm and redefining checkpoints and
warning signs, but would not necessitate major design changes.

3https://snap.berkeley.edu/about
4https://developers.google.com/blockly
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Scalability. The scalability of the unit visualizations used within
our system is currently limited to a user’s ability to discern indi-
vidual visual elements. There are also usability concerns when the
number of units represented is large, especially in regard to features
like selecting a single unit, e.g., selecting a student in the student
checkpoint–warning Plot. However, these concerns can be miti-
gated by adding a zoom feature or through aggregation methods,
e.g., replacing multiple units with a glyph. Another scalability issue
is representing long and complex code block sequences. We have
been able to control the amount of horizontal space occupied by
Path Summary View and the maximum number of blocks drawn
within a snapshot (these are linked; see Section 5), but complicated
questions necessitating a large quantity of code blocks would re-
quire further measures, such as a short, ‘compact’ version of long
snapshots with some code details hidden.

8 CONCLUSION AND FUTUREWORK
We propose a novel visual analytics system for analyzing student
behaviors in block-based programming environments. BlockLens
allows the interactive exploration of student coding behaviors at
multiple levels of detail. It allows educators to monitor students’
overall performance on questions, identify groups of students which
differ in their coding progress, performance, and behavior within
a question, and identify both common problem-solving strategies
and common mistakes or pitfalls. We describe a usage scenario to
show the usefulness of our system.

In the future, we would like to further test our approach with
more programming questions which require more steps and more
types of blocks, e.g., conditionals and loops. In addition, it would be
interesting to explore how the key snapshot identification algorithm
can be generalized to text-based programming.
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