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ABSTRACT
With the wide usage of data visualizations, a huge number of Scal-
able Vector Graphic (SVG)-based visualizations have been created
and shared online. Accordingly, there has been an increasing inter-
est in exploring how to retrieve perceptually similar visualizations
from a large corpus, since it can benefit various downstream appli-
cations such as visualization recommendation. Existing methods
mainly focus on the visual appearance of visualizations by regard-
ing them as bitmap images. However, the structural information
intrinsically existing in SVG-based visualizations is ignored. Such
structural information can delineate the spatial and hierarchical
relationship among visual elements, and characterize visualizations
thoroughly from a new perspective. This paper presents a structure-
aware method to advance the performance of visualization retrieval
by collectively considering both the visual and structural informa-
tion. We extensively evaluated our approach through quantitative
comparisons, a user study and case studies. The results demonstrate
the effectiveness of our approach and its advantages over existing
methods.
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•Human-centered computing→Visualization; • Information
systems→ Information retrieval; • Computing methodologies
→ Machine learning.
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1 INTRODUCTION
Data visualization provides users with a powerful approach to an-
alyze enormous data, communicate insights and achieve efficient
decision-making. Along with the popularity of visualizations, a
huge number of visualizations based on Scalable Vector Graph-
ics (SVGs) have been created and shared online. Compared with
bitmap-based visualizations, SVG-based visualizations have many
advantages such as the support of interactions [1] and quality-
preserving resizing. Thus, SVGs have been adopted by various
online platforms to store and present visualizations, for example,
Plotly1 and Observable2. With such a large volume of visualizations
online, how to retrieve similar visualizations has attracted growing
research interest from both academia and industry [31, 32, 36] due
to its significant importance for many downstream tasks. Specifi-
cally, the retrieval of similar visualizations is fundamental to down-
stream tasks such as creating visualization collections [32] and
recommending visualizations [31].

To achieve effective retrieval of similar visualizations, the core
problem is to characterize the similarity between two visualizations.
Existing studies mainly focus on estimating the similarity between
visualizations according to the data or perceptual similarity. The
existing methods based on data similarity [31, 42, 43, 48] focus on
the characteristics of data such as data distribution or metadata,
ignoring the visual appearance of visualizations. Since the original
data is not always available with the visualizations, the applica-
tion of visualization retrieval methods based on data similarity is
quite limited. Perceptual similarity mainly refers to the similar-
ity of visualizations perceived by users, which can also reflect the
data similarity. Compared to the direct computation of data sim-
ilarity, the computation of perceptual similarity does not rely on
the original data. To compute the perceptual similarity, existing
approaches [29, 36, 61] first extract the visual feature vectors from

1https://plotly.com/
2https://observablehq.com/
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visualizations and further calculate the distance between feature
vectors to measure their similarity. These methods mainly extract
the visual features of visualizations at the level of pixels. For exam-
ple, Saleh et al. [36] measured the visualization similarity by using
the color distribution of different pixels (i.e., color histograms). Re-
cently, deep learning-based methods [29, 61] have been proposed
to extract visual features automatically by treating visualizations
as bitmap images (e.g., the images in ImageNet [10]). However, few
prior studies have considered the structural information of visu-
alizations that exists in SVGs by nature, when characterizing the
perceptual similarity of visualizations.

Structural information of visualizations mainly describes the spa-
tial and hierarchical relationship between elements, such as the
position, grouping and hierarchy of the basic visual elements (e.g.,
<rect> and <path>). Compared with the commonly-used visual in-
formation (i.e., the visual features to describe the appearance of
visualizations) of visualizations, structural information enables a
unique perspective to characterize the appearance of visualizations
at the level of visual elements instead of pixels. It provides an ac-
curate description of how different visual elements are organized
in visualizations. For example, as shown in Figure 1, a grouped bar
chart with two groups of bars (Figure 1(a)) and a bar chart with only
one group of bars (Figure 1(b)) seem to show the same trend and are
regarded as similar charts, if only the visual information is consid-
ered by using a computer-vision-based method (e.g., convolutional
neural network (CNN) models). However, the grouped bar chart
actually shows how two sets of data are compared and it should
not be treated as a similar visualization as the bar chart with a sin-
gle group of bars. Instead, another grouped bar chart (Figure 1(c))
with both similar structure and appearance should be regarded sim-
ilar to the query bar chart (Figure 1(a)). From the example above,
it is obvious that structural information plays an important role
in characterizing the perceptual similarity between visualizations.
However, it still remains unclear what kind of structure-based fea-
tures can be extracted and how these structure-based features can
be leveraged to facilitate similar visualization retrieval.

In this paper, we aim to fill the research gap by leveraging both
structural and visual information to accurately evaluate the percep-
tual similarity between visualizations. We first conducted a prelim-
inary study to better understand users’ criteria on assessing the
perceptual similarity of visualizations and identified the three most
important criteria, i.e., the type of a visualization, the number of vi-
sual elements and the overall trend of visualized data. Building upon
these results, we propose to transform SVG-based visualizations
to graphs and bitmap images that reflect the structure and the ap-
pearance of visualizations, respectively. Then we utilize contrastive
representation learning to comprehensively delineate structural
and visual information in a visualization with embedding vectors.
Contrastive representation learning is a type of self-supervised
learning method and can minimize the distance between similar
samples and maximize the distances between diverse samples [21].
With contrastive learning, we avoid manually labeling the similar-
ity between different visualizations, enabling us to easily generalize
our approach to various visualizations. Finally, we gain an embed-
ding vector for each visualization that characterizes its structural
and visual information and is used for retrieving similar visual-
izations. Using the VizML corpus [19], we extensively evaluate

our approach through a crowdsourced user study, multiple case
studies and quantitative comparisons. The results demonstrate the
effectiveness of our approach.

The major contributions of this paper are summarized as follows:

• We present a novel structure-aware approach to characterize
the perceptual similarity between visualizations through em-
bedding vectors, which enables effective similar visualization
retrieval.

• We conduct extensive evaluations including a crowdsourced
user study with 50 participants, multiple case studies and
quantitative comparisonswith existing visualization retrieval
methods. The results verify the effectiveness of our structure-
aware visualization retrieval approach.

• We summarize the lessons we learned during exploring the
usage of structural information in visualization retrieval.

2 RELATEDWORK
The related work of this study can be categorized into three parts:
retrieval of visualizations, visualization similarity estimation and
visualization storage formats.

2.1 Visualization Retrieval
Visualization retrieval has attracted researchers’ interests in recent
years alongwith the increasing number of visualizations. According
to the type of queries, there are two major classes of methods for
retrieving visualizations [45], retrieval by definition and retrieval
by example.

Retrieval by definition means that users can explicitly specify the
criteria of retrieving visualizations using either programming lan-
guage or natural language. For example, Hoque and Agrawala [18]
enable users to create a JSON-like specification to indicate their tar-
get characteristics of visualizations such as encoding types. Some
other prior studies [7, 27, 44, 45] also provide users with tools to
search for visualization using explicit queries. Compared to retrieval
by definition, retrieval by example provides an intuitive way for
users to define the criteria of retrieving visualizations. Users can use
existing visualizations or sketches to search for other visualizations.
Several recent studies [29, 34, 36] take example visualizations as
inputs and return similar ones for data exploration or visualization
re-use. Zenvisage [42] and ShapeSearch [43] allow users to sketch
their desired data pattern in visualizations. Then they retrieve the
data which matches the pattern from the database and visualize
them to users. In this line of research, one of the core problems is
how to define the similarity between visualizations, which will be
further discussed in Section 2.2.

Our structure-aware approach falls in the category of retrieval
by example. Our approach takes SVG-based visualizations as the
input and then represents the visual and structural information of
them as embedding vectors for similar visualization retrieval.

2.2 Visualization Similarity
Computing the similarity of visualizations benefits various down-
stream tasks such as assisting in exploratory data analysis [62],
querying visualizations [29] and generating visualization collec-
tions [32]. Inspired by a previous study [29], prior methods on
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(a) Query (b) Visual Information (CNN) (c) Structural and Visual Information

Figure 1: This figure shows (a) a sample query and the top-1 visualizations retrieved by (b) only considering visual information
using CNN and (c) considering both structural and visual information. This example shows that structural information is
essential in performing similar visualization retrieval.

computing the similarity of visualizations can be roughly catego-
rized into two classes: data similarity and perceptual similarity.

The first class of methods focuses on the visualized data solely
to delineate the similarity between visualizations. Some representa-
tive studies in this class include SeeDB [42], ShapeSearch [43] and
VizCommender [31]. SeeDB [42] and ShapeSearch [43] define the
similarity between visualizations as the similarity of data distribu-
tion or trend. These methods require that the raw data is available,
which limits their application scenarios. A possible way to mitigate
the issue is to extract the raw data from visualizations and then
calculate the data similarity. However, since the performance of
existing data extraction methods (e.g., [39]) is not satisfactory [22],
the inaccurately extracted data may further affect the results of
retrieval.

Another class of methods focuses on the perceptual similarity of
visualizations. They extract visual features from visualizations and
further utilize the distance between hand-crafted or learned feature
vectors to characterize the similarity of visualizations. Hand-crafted
features mainly refer to those features which are selected by the
authors and can reflect certain characteristics of visualizations. For
example, prior studies proposed to use color histograms [36] or
histograms of gradients [32] to measure the perceptual similarity
of infographics or visualization workbooks. Due to the inefficiency
and complexity of selecting hand-crafted features, representations
automatically learned by machine learning models have been ap-
plied recently. For example, ChartSeer [62] proposed to use an
autoencoder to extract the representations of visualizations from
their specifications. ScatterNet [29] and ChartNavigator [61] intro-
duced convolutional neural networks (CNNs) on visualizations to
learn their representations.

This paper aims to propose a structure-aware approach for re-
trieving perceptually similar visualizations. Compared with the re-
trieval methods based on data similarity (e.g., [42, 48]), our approach
does not require the existence of original data and thus extends
the scope of inputs. Different from the existing approaches which
compute the perceptual similarity3 of visualizations (e.g., [29, 31]),
our approach considers both the pixel-level visual appearance and
the structure of visual elements. Such a design allows our approach
to better match the crowdsourced criteria of perceptual similarity,
which will be introduced in Section 7.1.

3In the remaining part of this paper, “similarity” refers to perceptual similarity.

2.3 Visualization Format
Depending on the ultimate purposes of different visualizations, they
can be stored in various formats including graphics, programs and
hybrid approaches [55].

The graphics-based visualizations include two common formats:
raster graphics and vector graphics. Raster graphics (i.e., bitmaps)
are the most common approaches to store and share visualiza-
tions [37] due to their high compatibility. However, they are hardly
editable and can lose visualization-specific information such as
the chart type and visual encodings [55]. As an alternative, vector
graphics like SVGs provide general users with the flexibility of
modification and annotation and can preserve partial visualization-
related information [54, 55] such as the relationship between visual
elements. Previously, some studies have explored utilizing vector
graphics to achieve visualization query by specification [18] and
visualization type classification [1].

Programs are also a common way to store visualizations such
as D3 [2], Vega-Lite [38] or Plotly. They preserve the visualization-
related information and raw data. However, when rendering them
as visualizations, extra compilers are always required, which limits
their compatibility and wide usage. Recently, to combine the ad-
vantages of graphics and programs, several recent studies have also
explored how to embed programs into graphics, such as [12, 35, 60].

Bitmaps and programs are commonly used in previous studies
to compute the similarity of visualizations [29, 50, 62]. However,
bitmaps suffer from the lack of visualization-specific information
while the usage of programs limits the generalizability of related
methods. Thus, in our paper, we propose to utilize the structural in-
formation (see Section 3.1) stored in scalable vector graphics (SVGs),
which is widely used in spreading visualizations on the Internet
due to its interactivity [1]. We combine the structural information
extracted from SVGs and the visual information extracted from
bitmaps to achieve effective characterization of visualization simi-
larity.

3 BACKGROUND
In this section, we introduce the background of our research, in-
cluding the structural information in SVGs (Section 3.1) and the
overview of contrastive learning, which enables unsupervised rep-
resentation learning for both SVGs and bitmaps (Section 3.2).
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3.1 Structural Information in SVGs
Scalable vector graphics (SVGs) are files used to describe vector-
based graphics using Extensible Markup Language (XML)4. They
have been widely used in visualizations on the Internet [1]. Com-
pared with bitmaps, SVGs can preserve more visualization-specific
information such as the style of the visual elements [55]. The struc-
tural information in SVGs mainly includes the hierarchical and
spatial relationship among elements and the properties of each
element. The hierarchical information of visual elements can re-
flect how they are inherited and grouped, for example, in Figure 5,
the <path>s of green bars are grouped under the same <g> while
the <path>s of blue bars are grouped under another <g>. Such in-
formation of visual elements can further illustrate the usage of
visual channels and reveal some information of the raw data like
the number of data instances and the number of attributes. The
spatial relationship, which is extracted based on the positions of
visual elements, can describe how the elements are placed and a
rough trend of data. The properties of each element in SVGs also
encode rich information, for example, the type, style, and shape of
the element. The types of elements reflect the functionality of ele-
ments, for example, <g> is used to group other elements and <text>
can be rendered as graphics containing text. The styles of an ele-
ment indicate how the elements are rendered. Some common styles
include the color and stroke of an element. Furthermore, the shape
of some visual elements can also be obtained from the properties,
for example, the attribute “d” in <path> defines the shape of a path.
Besides, SVGs also have some properties related to interactions (e.g.,
onclick and onmouseover).

In this paper, we propose to utilize the structural information
extracted from SVGs to enhance the retrieval of similar static visu-
alizations. To be more specific, we mainly consider structural infor-
mation to reflect the hierarchical and spatial relationship among
elements. Some side information such as the types and styles of
elements is also utilized to distinguish different elements. More
details are further illustrated in Section 5.1.

3.2 Contrastive Learning
Supervised deep learning approaches always require a large number
of samples with labels to train a model with satisfactory perfor-
mance [21]. However, corpora with high-quality labels are always
hard to be obtained due to the high cost of human annotation.
Thus, to reduce the effort of manually labeling, self-supervised
representation learning approaches, which are sometimes consid-
ered as a subset of unsupervised learning methods, have attracted
researchers in various fields, for example, computer vision [4, 5],
user interface (UI) design [26] and visualization [47]. Contrastive
learning is a representative approach of self-supervised learning.
The basic idea behind it is to train a model which can discriminate
similar and dissimilar samples [21]. As illustrated in Figure 2, a com-
mon pipeline in contrastive learning approaches contains 4 steps:
data augmentation, representation extraction, representation projec-
tion and contrastive loss computation [4]. In the first step, a data
sample will be randomly transformed (e.g., distortion for images)
and the transformed samples will be considered as similar (positive)
samples. Then the transformed samples are encoded to embedding
4https://developer.mozilla.org/en-US/docs/Web/SVG

vectors by an encoder in the second stage. The embedding vectors
are further projected to a space where the loss is computed. After
training using the pipeline above, the encoder is used solely to
extract representations of data samples and different projectors can
be trained for various downstream tasks such as classification.

Original visualization

Stopgrad

Encoder

Projector

Encoder

Projector

Predictor Loss

Data 
augmentation

Representation 
extraction

Representation 
projection

Loss 
computation

Transformed visualization Transformed visualization

Figure 2: The basic structure of contrastive learning contains
four major modules [4]: data augmentation, representation
extraction, representation projection and loss computation.
This figure shows SimSiam [5] as an example.

In our paper, we propose to use two CNN- and GNN-based con-
trastive learning models [5, 46] to generate the embedding vectors
of visualizations’ visual and structural information, respectively.
Then the embedding vectors are concatenated and used for visual-
ization retrieval.

3.3 Graph Neural Networks
Inspired by successful convolutional neural networks (CNNs), graph
neural networks (GNNs) have been proposed to model the relation-
ship among nodes in graphs. The basic idea behind GNNs is to
propagate the features of nodes through edges and then aggre-
gate the information on nodes to capture node features and graph
structures [63]. The feature propagation and aggregation can be
considered as a generalized convolutional filter on graphs. GNNs
have shown outstanding performance on graph-related tasks (e.g.,
node classification [40] and graph classification [58]) in various
application domains (e.g., UI design [33], online education [25] and
visualization [52]). As introduced in Section 3.1, SVG elements are
organized as trees that can also be regarded as graphs. Thus, it is
intuitive to apply GNNs to learn and represent the structural infor-
mation in SVGs as embedding vectors. Considering the advantages
of contrastive learning (see Section 3.2), GNN-based contrastive
learning approaches are suitable for extracting the embedding vec-
tors of graphs of SVG elements in our structure-aware approach.
Existing GNN-based contrastive learning approaches are mainly
applied to three types of tasks [57], including node-level tasks
such as node classification (e.g., DGI [49]), edge-level tasks such as
link prediction (e.g., BiGi [3]) and graph-level tasks such as graph

https://developer.mozilla.org/en-US/docs/Web/SVG
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classification (e.g., InfoGraph [46]). Since we aim to represent the
structural information in the graph of SVG elements with embed-
ding vectors, InfoGraph [46], one of the state-of-the-art methods
for graph embedding, is applied in our approach. Section 5.1 will
introduce more details of InfoGraph.

4 PRELIMINARY STUDY
Before designing our structure-aware visualization retrieval ap-
proach, we conducted a preliminary study in which we collected
the opinion of 54 visualization users on the criteria of perceptual
similarity between visualizations. In this section, we introduce the
procedure5 of the study and summarize the important criteria.

4.1 Procedure
Our preliminary study was conducted on Prolific6, a widely used
platform for recruiting research participants. There are totally three
parts in the study. In the first part, we first introduced the overall
process and got the participants’ consent to join the study. Then,
to verify that the participant has basic knowledge of visualizations,
each participant was required to answer three simple visualization-
related questions, for example, “what is the chart type of the given
visualization?”. Only participants who correctly answered the three
verification questions were allowed to join the study. No other cri-
teria were used in the participant recruitment. In the second part of
the study, to encourage the participants to reflect on how they judge
the similarity of visualizations, each participant was presented with
five query visualizations and their retrieved top-5 similar visualiza-
tions by using visual information only. The participants were asked
to give each retrieved visualization a score ranging from 1 (the least
similar) to 5 (the most similar). After finishing the scoring, in the
last part of the study, we asked participants to write down their
criteria of scoring the retrieved visualizations in a text box.

After the study, we summarized the responses from participants.
Since there may be ambiguity in understanding the criteria men-
tioned by participants, we first classified the major criteria into
six major categories and two co-authors of this paper labeled all
responses individually. If the annotations were inconsistent on
any response, we examined and discussed together to reach an
agreement on these cases.

4.2 Results
The six major criteria and their frequency are shown in decreasing
order in Figure 3. In the results, we can notice that there are three
important criteria (i.e., visualization type, the trend of data and
the number of visual elements) with much higher frequency than
other criteria. The results of our preliminary study also align with a
previous study [23] well. Specifically, the number of visual elements
and the trend of data are also considered when measuring the
difference between two visualizations in the previous research [23].
Thus, the type of visualization, the trend of data and the number
of visual elements are necessary to be considered explicitly in our
approach when characterizing similarity of visualizations.

5The protocol of the preliminary study and the user study has been approved by the
Institutional Review Board of our institution.
6https://www.prolific.co/
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Figure 3: We categorized different criteria mentioned by par-
ticipants into six classes and identified the three most im-
portant criteria based on their frequency. Other styles refer
to the styles of visual elements other than colors, for exam-
ple, the space between bars and the width of bars. Metadata
refers to the meta-information of data in the visualizations,
for example, the range and the type of data.

5 METHOD
In this section, the method of our structure-aware visualization
retrieval is introduced. An overview is shown in Figure 4. To ex-
tract and represent the structural information in a visualization, we
first construct a graph of visual elements with features and then
apply a GNN encoder to generate the embedding vector of it (Sec-
tion 5.1). Then we also render the visualization to a bitmap and use
a CNN model to encode the visual information as an embedding
vector as well (Section 5.2). Here we applied contrastive represen-
tation learning to train both CNN and GNN encoders since it can
eliminate human efforts on data annotation. Finally, we normalize
and concatenate the embedding vectors of structural and visual
information for similar visualization retrieval (Section 5.3).
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Finally, two embedding vectors are normalized and concate-
nated as the final representation of the visualization.
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Figure 5: This figure illustrates how we transform an SVG to a graph of visual elements. In the SVG, each bar can be either
represented by a <path> or <rect>. Due to the limited space, we only show partial SVG and the corresponding subgraph. Each
node represents an element in the SVG. The colors of nodes in the graph indicate the corresponding bars in the visualization.
In (c), all leaf nodes are with self-loop edges, which are not all shown in this figure.

5.1 Representation Learning of Structural
Information

As introduced before, structural information in SVGs can reflect the
hierarchical and spatial relationship between visual elements ex-
plicitly. To utilize the structural information, we first extract visual
element-level features and construct a graph of visual elements.
Then, we apply a GNN-based graph contrastive learning method
to generate the embedding vector of the structural information.

Feature Extraction. In the first step, we aim to extract features
to describe the characteristics of elements in SVGs. These features
are designed to reflect the types, styles and shapes and positions of
elements. To make our approach simple and generalizable, we only
extract basic features inspired by Beagle [1]. The types of elements
can reflect their functionality in an SVG. We represent the types
of elements with one-hot encoding. The style features of elements
mainly include the color, the stroke width and the opacity of the
element, which are the most common styles of elements. According
to the results of our preliminary study, we also consider the styles
of SVG elements. Though the styles of visualizations such as colors
are not the most frequent criteria when deciding the similarity
between visualizations, it is still considered by some participants.
Thus, we take the commonly used styles into consideration and
ignore those infrequent ones such as the stroke style.

How to define shape features for different types of visual ele-
ments is challenging due to their characteristics. For some visible
visual elements like bars in bar charts and scatters in scatter plots,
we are able to describe each visual element with the area, center,
height and width of its bounding box. However, it is not enough
to describe lines in line charts with these simple features. Two
lines with the same bounding box can represent totally different
trends of data. To deal with this issue, we further introduce two
features to describe the shape of lines in line charts: the number
of vertices in the line [1] and the trend of the line. Inspired by a
prior study [23], LOESS regression [8] is applied to model the rough
trend of a line based on vertices. Since LOESS is a non-parametric
regression approach, we are not able to extract a fixed number of

features to describe the trend. Thus, we use the predicted values
of LOESS on five evenly sampled vertices as features of the trend.
Since <text> can hardly be described by the features above, we
further add the length of the text as a feature. Furthermore, the
relationship between positions of elements within the same group
is also necessary to reflect the overall trend in the visualizations.
Thus, we sort the visual elements according to their positions on
the horizontal and vertical axes and introduce the differences in
positions as features of each element as well. Finally, for elements
without certain features (e.g., <g> does not have specified width
and height), we fill zeros as the placeholders. All features are also
scaled according to their ranges. For example, positions are scaled
using the height and width of the entire SVG.

Graph Construction. After extracting the features for individ-
ual elements in visualizations, we construct graphs of visual ele-
ments based on the tree structure of elements in SVGs. Such graphs
of visual elements are used to represent the hierarchical and spatial
relationships between different visual elements in visualizations.
Since the graph is the input to a graph neural network (GNN) in the
latter stage, so we further process them to facilitate the propagation
of features between nodes. An overview of graph construction is
shown in Figure 5.

First, the tree of elements in an SVG is transformed to a bidi-
rectional graph where elements and hierarchical relationships are
treated as nodes and edges respectively. Then, we remove the visual
elements which serve as references such as the legend and grid lines.
This step is conducted to reduce the noise in the graph of visual
elements. In the next step, we remove the <g> elements that connect
with one or two other elements. The rationale behind this operation
is that <g> is used to group other elements and thus not meaningful
if it has zero or one child. Removing these <g> elements can reduce
unnecessary nodes and edges in the graph. Finally, we add two
types of edges to augment the graph: the self-loop edges and the
edges between neighbor elements (see Figure 5(c)). The self-loop
edges are added to preserve each element’s own features during
the feature propagation. The edges between neighbor elements
are designed to reflect the spatial relationship between elements
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by propagating their spatial features. Here neighbor elements are
defined as the elements which are next to each other after sorting
according to their positions as described previously.

Contrastive Learning Structure. To represent the structural
information as an embedding vector, we utilize InfoGraph [46], a
state-of-the-art graph contrastive representation learning model.
The core idea of InfoGraph is to maximize the mutual information
between the embedding vector of the whole graph and the embed-
ding vectors of substructures (e.g., individual or a group of nodes)
in the same graph. To be more specific, it takes pairs of graphs
as the input of a GNN encoder. Then it optimizes the encoder by
maximizing the mutual information between the embedding vec-
tor of one graph and the embedding vector of a subgraph inside,
and minimizing the mutual information between the embedding
vectors of a graph and the subgraph in another one. Finally, it uses
the encoder to generate the embedding vectors of all nodes and
aggregates them as the representation of the graph.

In our method, we train InfoGraph to generate the embedding
vectors of graphs of visual elements, which encode the structural
information in SVGs.

5.2 Representation Learning of Visual
Information

In the previous section, we introduce howwe extract the representa-
tion of structural information hidden in SVGs with a state-of-the-art
graph contrastive learning method. Though the structural infor-
mation can partially reflect the appearance of a visualization, for
example, the size and position of a visual element, it still lacks
the ability to comprehensively describe the appearance of visual-
izations. Thus, inspired by previous studies [29, 61] which utilize
convolutional neural networks (CNNs) to extract the visual fea-
tures of visualizations, our approach utilizes contrastive learning
to generate the representation of visualizations using bitmaps as
input. In the rest of this section, we briefly introduce the structure
of the contrastive learning structure we used and then illustrate
how we adapt it to extract visual information from visualizations.

Contrastive Learning Structure. In our method, SimSiam [5]
is applied to generate the representation of visual information.
Compared to other state-of-the-art contrastive learning approaches
such as SimCLR [4] and BYOL [15], SimSiam has a similar perfor-
mance with less demand for computational resources. It utilizes
a structure based on Siamese networks (see Figure 2). Two ran-
domly transformed samples (denoted as 𝑠1 and 𝑠2) of the original
sample are fed into the same encoder which is followed by a pro-
jection head. After projection, both samples are transformed to
embedding vectors (denoted as v1 and v2 respectively) , which
are further fed into a prediction head with a bottleneck struc-
ture. The outputs of the prediction head are denoted as p1 and
p2 correspondingly. Then the loss is calculated based on the neg-
ative cosine similarity with a stop-gradient operation as 𝐿𝑜𝑠𝑠 =

−1/2 ∗ (𝑐𝑜𝑠 (v1, 𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑 (p2)) + 𝑐𝑜𝑠 (v2, 𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑 (p1))). Here the
stop-gradient operation controls how the model is optimized with
gradients and proved to be beneficial [5].

Pre-processing and Data Augmentation. The original Sim-
Siam is designed for general images. To adapt it for visualizations,

we modify the pre-processing of input bitmaps and data augmenta-
tion. First, since the input of the encoder has to be a square bitmap,
we need to resize or pad visualizations to be square. Resizing input
images is used in SimSiam [5]. However, resizing is not appropriate
for visualizations since a resized visualization can alter the trend
of the original one [23], which may affect the judgment on the
similarity of visualizations. Thus, we pad the original bitmap to
be a squared one, which can better preserve the original trend of
data. The next step is to apply data augmentation techniques to
generate transformed data instances as mentioned in Section 3.2.
Chen et al. [4] have summarized eight common approaches used for
image augmentation, including cropping and resizing, cutting out,
flipping, rotating, blurring, applying noise or filter and distorting
the colors. However, not all of them are suitable for visualizations.
For example, flipping the visualization can generate a visualization
with a different trend of data as shown in Figure 6. Thus, in the
training of our CNN model for visualizations, we select some of the
data augmentation techniques based on those used in SimSiam [5].
First, cropping and resizing, and partially cutting out are applied
inspired by the closure principle in Gestalt principles of perception,
which states that people have the ability to fill in the blanks and
make the object in the image complete. Also, the color distortion is
randomly applied to some visualizations by adding color jitter or
transforming the bitmap to a greyscale one. The rationale behind
this is that color is not always used to encode information in visual-
izations and is considered not the most important criteria according
to our preliminary study (see Figure 3). In Figure 2, we present two
transformed visualizations in which the left one is cropped and
converted to a greyscale one while the right one is cut out and
added color jitter (padding is not shown in the figure).

After generating the transformed samples, we use the original
settings of SimSiam to train the encoder. At the end of the training,
other parts of the model are disposed and the encoder is kept to
generate the embedding vector of visual information.

(a) Original (b) Flipped

Figure 6: The flipped visualization is dissimilar to the origi-
nal one due to the change of overall trend. Thus, flipping is
invalid for generating similar samples.

5.3 Visualization Retrieval
In Sections 5.1 and 5.2, we introduce how to represent both struc-
tural and visual information using low-dimensional embedding
vectors. Then, with the two embedding vectors of a visualization,
we perform the similar visualization retrieval.

In our approach, we normalize and concatenate both the em-
bedding vectors into one vector, which is the final representation
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of a visualization. Initially, we tried to apply multi-modal autoen-
coders [11, 30] to learn the joint embedding vector of both structural
and visual information. However, the performance of the learned
embedding vector using quantitative metrics in Section 6.3 is not
better than simply concatenation. We suspect the reason is that
encoding two vectors into a single vector is a lossy compression,
which introduces extra noise. Thus, to avoid extra training and
additional noise, we use concatenation as our approach to generate
the final embedding vector of a visualization. After obtaining the
embedding vectors of visualizations, the cosine similarity between
the embedding vectors of two visualizations is used to measure
the distance between them. When a visualization is selected for
query, we calculate its similarity to other visualizations and rank
the similarity scores to retrieve the most similar ones.

6 EVALUATION
By using the large-scale SVG-bitmap visualization corpus (Sec-
tion 6.1), we conducted extensive evaluations to assess our structure-
aware visualization retrieval approach including quantitative com-
parisons (Section 6.3), a user study (Section 6.4) and case stud-
ies (Section 6.5). We also introduce the model settings used in
evaluations (Section 6.2). The results verify the effectiveness of our
structure-aware visualization retrieval approach.

6.1 Corpus
Since our approach is a deep learning-based method (Sections 5.1
and 5.2), we need a relatively large-scale corpus to train and test it.
Thus, by using the links to visualizations provided in VizML [19],
we built a crawler to collect the SVG-bitmap visualization pairs
from Plotly Chart Studio7. Following previous practices using the
VizML corpus [19, 24], we also kept one visualization per user.
Also, we removed those pairs with invalid bitmaps or SVGs, for
example, empty visualizations or incomplete SVGs. Finally, 51,037
SVG-bitmap visualization pairs were collected. The corpus contains
five types of visualizations: bar charts, box plots, histograms, line
charts and scatter plots. Since the difference of histograms and bar
charts mainly lies in the data transformation, which is beyond our
scope, they are categorized into the same class in the following eval-
uations. A detailed distribution of visualization types is shown in
Table 1. In our evaluations, we follow the practice in Screen2Vec [26]
and randomly sampled 90% of pairs of each visualization type as
the training set and the rest was used for testing.

Table 1: Statistics of the SVG-bitmap visualization corpus.

Number of SVG-bitmap pairs 51,037

Number of each visualization type

Bar/Histogram 12,608
Box 3,269
Line 15,488
Scatter 19,672

6.2 Model Settings
We compared the retrieved visualizations using four methods to
demonstrate the effectiveness of our structure-aware approach:
7https://chart-studio.plotly.com/

• Visual Information by Histogram of Oriented Gradi-
ents (HOG). HOG [9] is one of the most widely used feature
descriptors of images and has been applied to compute the
similarity between visualizations in a recent study [32].

• Visual Information by CNN. CNNs have been widely
applied to extracting the visual information of visualiza-
tions and computing the similarity [29, 32, 61]. Following
the method described in Section 5.2, we extract the visual
information using SimSiam [5] with ResNet-50 [17] as the
encoder. Empirically, we set the training epochs as 200, the
batch size as 128 and the learning rate as 0.025. The embed-
ding dimension is set as 512. We did not use any pre-trained
model as suggested by Haehn et al. [16].

• Structural Information by GNN. As mentioned in Sec-
tion 5.1, we use InfoGraph [46] with Graph Isomorphism
Network (GIN) [58] as the encoder to generate the embed-
ding vectors of structural information. Based on the original
experiment settings, we set the training epoch as 40, the
batch size as 128 and the learning rate as 0.001. Since the
radii of graphs in our corpus are mostly lower than or equal
to 2, we set the layers of the encoder as 2. The embedding
dimension is 512 as well.

• Structural and Visual Information Fusion. This is our
structure-aware approach which jointly considers structural
and visual information by normalizing and concatenating
the embedding vectors generated by CNN and GNN as men-
tioned in Section 5.3.

After extracting the embedding vectors of visualizations using
the four approaches above, we calculate the similarity score be-
tween visualizations as mentioned in Section 5.3. In the following
sections, we use V-HOG, V-CNN , S-GNN and S&V-Fusion to
simplify the names of the four approaches above.

6.3 Quantitative Evaluation
We first conducted a series of quantitative evaluations to assess the
effectiveness of our approach in comparison with baselines.

Metrics. As described in Section 6.1, there are several types of
visualizations in our corpus. Thus, we need to use some metrics
which are unified across different types of visualizations. Two sim-
ple metrics are utilized to approximately probe the performance
of different approaches based on the criteria identified in our pre-
liminary study. The first metric is to measure the visualization type
consistency between a query visualization and the retrieved visu-
alizations. To be more specific, we count the number of retrieved
visualizations that are of the same type as the original visualization
in a top-k query. Then the number of such visualizations is divided
by k to obtain the type-consistent rate of each query visualization.
Finally, the average and the standard deviation of Type-Consistent
Rates of all visualizations in the test set are computed and denoted
as average type-consistent rate (𝑇𝐶𝑅𝑎𝑣𝑒 ) and standard deviation of
type-consistent rates (𝑇𝐶𝑅𝑠𝑡𝑑 ).

The second metric is to measure the difference of the numbers of
visible visual elements between query and retrieved visualizations.
Here the visible visual elements refer to the elements that are the
leaf nodes in our graph. Since the non-leaf elements (i.e., <g> and
<svg>) are mainly used to group or contain other elements and are

https://chart-studio.plotly.com/
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not directly visible, they cannot be observed by visual information-
based models (i.e., V-CNN and V-HOG). To make the metric fair to
all methods, we only count the visible visual elements. Examples
of visible visual elements are shown as colored nodes in Figure 5.
First, we calculate the normalized difference of the numbers of
visible visual elements between query and retrieved visualizations.
Then, similar to TCR, we also compute the average Differences of
the numbers of Visual Elements (𝐷𝑉𝐸𝑎𝑣𝑒 ) and standard deviation of
differences of the numbers of visual elements (𝐷𝑉𝐸𝑠𝑡𝑑 ).

Among all metrics, a smaller value of𝑇𝐶𝑅𝑠𝑡𝑑 ,𝐷𝑉𝐸𝑎𝑣𝑒 or𝐷𝑉𝐸𝑠𝑡𝑑
is better, since a smaller value of these metrics shows that the
method can achieve a more stable performance or smaller difference
between the query visualization and the retrieved visualizations.
On the other hand, a larger value of 𝑇𝐶𝑅𝑎𝑣𝑒 is appreciated, since
it demonstrates that the model can retrieve more visualizations of
the same type.

Results. Table 2 shows the overall results of the four meth-
ods. The results are the average values from five runs of each
method. Our structure-aware approach consistently outperforms
other approaches using𝑇𝐶𝑅𝑎𝑣𝑒 and𝑇𝐶𝑅𝑠𝑡𝑑 and is better than visual
information-based methods in 𝐷𝑉𝐸𝑎𝑣𝑒 and 𝐷𝑉𝐸𝑠𝑡𝑑 . The results
of 𝐷𝑉𝐸𝑎𝑣𝑒s align with the results by Haehn et al. [16]. They con-
ducted point-cloud experiments and demonstrated that CNNs do
not perform well in estimating the difference of numbers of visual
elements. In our experiments, V-CNN also performed worse when
using 𝐷𝑉𝐸𝑎𝑣𝑒 as the metric. Compared to V-CNN, both S-GNN and
S&V-Fusion can distinguish the number of visual elements well,
which shows the necessity of considering structural information in
characterizing the similarity of visualizations.

Table 2: Results of our quantitative evaluation. 𝑇𝐶𝑅 denotes
type-consistent rate and𝐷𝑉𝐸 denotes differences in numbers
of visual elements. 𝑎𝑣𝑒 and 𝑠𝑡𝑑 denote average and standard
deviation values, respectively. The best results when perform-
ing each top-k retrieval are in bold. The results show our
structure-aware approach achieves the best performances
among the four methods.

Top-k Method 𝑇𝐶𝑅𝑎𝑣𝑒 𝑇𝐶𝑅𝑠𝑡𝑑 𝐷𝑉𝐸𝑎𝑣𝑒 𝐷𝑉𝐸𝑠𝑡𝑑

1

V-HOG 0.6597 0.4738 45.1266 555.2019
V-CNN 0.7231 0.4474 17.1826 268.8787
S-GNN 0.7372 0.4401 0.1555 0.4888
S&V-Fusion 0.7601 0.4270 0.3674 1.6752

5

V-HOG 0.6074 0.3249 42.9230 253.5407
V-CNN 0.6992 0.3150 24.4112 183.4934
S-GNN 0.7058 0.3175 0.2215 0.8603
S&V-Fusion 0.7383 0.3096 0.6145 3.3837

10

V-HOG 0.5877 0.2948 46.3089 195.6248
V-CNN 0.6884 0.2921 26.3127 149.2130
S-GNN 0.6893 0.2983 0.2628 1.0391
S&V-Fusion 0.7246 0.2900 0.7909 4.2785

20

V-HOG 0.5614 0.2674 49.7751 163.7496
V-CNN 0.6764 0.2785 25.1575 108.1764
S-GNN 0.6713 0.2855 0.3073 0.9769
S&V-Fusion 0.7076 0.2809 1.0432 5.1894

To further understand the pros and cons of different approaches,
we investigated their 𝑇𝐶𝑅𝑎𝑣𝑒 values of each visualization type
and show the average confusion matrix in five runs among all
types in Figure 7. From the heatmaps, we can first notice that V-
HOG is obviously worse than other approaches, probably due to
its simplicity by nature. Thus, in the rest of our paper, we will
mainly focus on the comparison among the other three approaches.
S&V-Fusion is consistently better than other approaches, which
demonstrates the advantages of our structure-aware approach. An
interesting observation is that, though S-GNN and V-CNN have
close performance in terms of the overall 𝑇𝐶𝑅𝑎𝑣𝑒 , they have clear
differences in 𝑇𝐶𝑅𝑎𝑣𝑒 of single visualization types. V-CNN has an
advantage on bar charts and box plots while S-GNN performs better
on line charts and scatter plots. We checked the detailed results
and speculate that the possible reasons are as below. First, visual
elements in bar charts and box plots often occupy a large space in
the visualization and their shapes are easy to be distinguished by V-
CNN. However, lines and scatters are less obvious in visualizations
and sometimes can be confused with each other, which may lead to
the inaccurate perception by CNNs (see Figure 9(a)). Compared to
V-CNN, S-GNN explicitly considers all the visual elements as nodes
in the graph of visual elements. Thus, it performs better on line
charts and scatter plots. The disadvantages of S-GNN are mainly
shown by the results of box plots and bar charts. A possible reason
is that S-GNN only describes visual elements roughly using their
bounding boxes. Boxes, bars and scatters can be confused when
their bounding boxes are similar.

In summary, the results show that both V-CNN and S-GNN have
their advantages when dealing with certain types of visualizations.
Thus, the structural information in SVG-based visualizations is
essential to be jointly considered with visual information to im-
prove the performance of visualization retrieval. The results of
S&V-Fusion in Figure 7(d) confirms its effectiveness compared to
other approaches.

6.4 User Study
The effectiveness of our approach was further evaluated in a user
study with 50 participants recruited from Prolific. We asked the
participants to score the similarity between the query visualization
and retrieved ones. In this section, we introduce the protocol and
results of the user study.

Dataset. In the user study, we first randomly sampled 40 visual-
izations in the test set. For each sampled visualization, we retrieved
the top-5 similar visualizations using the four approaches described
in Section 6.2. Then each participant is presented with 5 query
visualizations and the corresponding retrieved visualizations for
scoring. We further added an attention check question to ask the
participant to label the similarity between the same visualizations.
The visualizations used in the user study are available through
https://structure-vis-retrieval.github.io/.

Procedure. The user study contains two parts. Similar to the pre-
liminary study, the first part was to introduce the procedure, collect
consent from participants and test the visualization knowledge of
the participants. After they passed the test, we moved to the second
part. Specifically, we introduced the criteria for visualization simi-
larity collected in our preliminary study and emphasized that the

https://structure-vis-retrieval.github.io/
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Figure 7: The heatmaps show the𝑇𝐶𝑅𝑎𝑣𝑒 values of different chart types of four approaches when performing top-5 queries. The
horizontal axis denotes the query visualization type and the vertical axis denotes the retrieved visualization type. A block with
a darker color indicates a higher 𝑇𝐶𝑅𝑎𝑣𝑒 .

visualization type, trend of data and number of visual elements are
of high priority based on the results of the preliminary study. We
also showed several examples to illustrate these criteria for scoring
the similarity between visualizations. The purpose of introducing
these criteria and the corresponding examples is to calibrate the
participants’ judgment and eliminate the effect of extreme scores
given by some participants. Then the participants were asked to
apply these criteria to score the retrieved top-5 similar visualiza-
tions for each query visualization using a 5-point likert scale where
1 means the least similar and 5 means the most similar.

Results. The results of our user study are shown in Figure 8. We
calculated the average similarity scores of retrieved visualizations
by each method (S&V-Fusion: 2.8607, V-CNN : 2.7707, S-GNN : 2.4833
and V-HOG: 2.002). A higher score indicates that the retrieved
visualizations are more similar to the query one. According to the
results, S&V-Fusion outperforms all other models with statistical
significance (𝑝 < 0.001) tested with Wilcoxon Signed-rank tests.

V-HOG V-CNN S-GNN S&V-Fusion
1.0

1.5

2.0

2.5

3.0

Figure 8: The average similarity scores of retrieved visu-
alizations are shown with 95% confidence intervals. S&V-
Fusion outperforms others with statistical significance (𝑝 <

0.001).

6.5 Case Study
In this section, we present some examples shown in the user study
based on the three most important criteria for visualization similar-
ity. These cases further illustrate the pros and cons of our structure-
aware approach compared to others. Since V-HOG consistently

performs worse than others, in this section, we mainly compare
S&V-Fusion, S-GNN, and V-CNN.

Type of Visualizations. As Table 2 and Figure 7 show, S&V-
Fusion and S-GNN have advantages in distinguishing the type of
charts, especially between line charts and scatter plots. A case
regarding this phenomenon is identified in our user study, as shown
in Figure 9(a). The query visualization in this case is a line chart with
an increasing trend. However, with the representation generated by
V-CNN, a scatter plot with a similar trend is considered as a similar
visualization (bounded with a red box in Figure 9(a)). Though they
share some common features such as the trend of data, they should
not be considered as similar visualizations according to the criteria
of visualization types, which is identified in our preliminary study
(see Section 3). Both S&V-Fusion and S-GNN do not have such kinds
of mistakenly retrieved visualizations, which indicates that they can
better maintain the visualization type consistency. Another case in
Figure 9(b) also reflects a similar issue of V-CNN. V-CNN retrieved
multiple stacked bar charts for a plain bar chart while the other
two methods only returned similar plain bar charts.

Number of Visual Elements. The query visualization in Fig-
ure 9(a) is a line chart with three lines. S-GNN achieves the best
results using this criterion since most of the retrieved visualizations
have three lines. Most of the retrieved visualizations by V-CNN are
with a single line, which fails to meet the criterion on the numbers
of visual elements.

Trend of Data. Though S-GNN shows its advantages in distin-
guishing chart types and identifying the difference between num-
bers of visual elements, its capability of considering the trend of
data is not as good as V-CNN. As both cases show, almost all the re-
trieved visualizations by S-GNN have trends that are different from
the query visualization, which reflects its drawback in effectively
representing the trend of data in visualizations. Thus, we consid-
ered both the visual and structural information in S&V-Fusion to
mitigate such an issue. As both cases show, S&V-Fusion achieves a
better performance in retrieving visualizations with similar trends
while preserving the advantages in the type of visualizations and
the number of visual elements.
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Figure 9: This figure shows examples of query and top-5 retrieved similar visualizations by V-CNN, V-HOG and S&V-Fusion.

7 DISCUSSION
In this section, we discuss the lessons learned in developing our
structure-aware visualization retrieval methods, the generalizabil-
ity of our approach, some potential application scenarios and the
limitations of our approach.

7.1 Lessons
In our approach, we explicitly consider the structural information
through deep learning techniques, which enables a new perspective
of characterizing the similarity of visualizations. To facilitate future
studies along this direction, we conclude two important lessons, the
necessity of structural information in characterizing visualization
similarity and deep learning model customization for visualizations.

Necessity of Structural Information. The similarity between
visualizations can be measured through various aspects such as
visualization types, colors and trends of data. Thus, to identify key
criteria when determining similarity between visualizations, we
conducted a preliminary study with general visualization users and
summarized three most important criteria, the visualization type,
the trend of data and the number of visual elements. These three
criteria indicate the necessity of considering structural information
in visualizations since they consider the similarity more at the level
of visual elements instead of the level of pixels. Most of the prior
studies merely treat visualizations as bitmap images and extract
features based on pixels, which ignores the important structural
information of visual elements. Compared with these approaches,
our method shows a promising direction of explicitly considering
the structural information in SVGs to characterize visualization sim-
ilarity. We treat each visual element in the visualization as a node

with basic features in the graph and use edges to represent their
spatial and hierarchical relationships, which can effectively reflect
the numbers and groups of visual elements. Since the structural
information is mainly at the level of visual elements, we further
leverage the pixel-level visual information to make the character-
ization of visualization more fine-grained. As our case studies in
Section 6.5 show, S&V-Fusion achieves better performance in ful-
filling the requirements of retrieving similar visualizations such as
the numbers of visual elements and visualization types.

Deep Learning Model Customization. Deep learning mod-
els have been proved to be effective in many applications such
as image processing and natural language understanding. There
is also increasing interest in applying deep learning approaches
in visualization-related tasks such as automatic visualization gen-
eration [19] and visualization similarity characterization [61]. In
our approach, we also apply state-of-the-art contrastive learning
models to generate embedding vectors of visualizations. However,
we noticed that these general deep learning models may not be
directly applied to visualizations. For example, as we mentioned
in Section 5.2, flipping is a commonly used operation for data aug-
mentation in general image processing. However, it is not suitable
for visualizations since the trend of data is entirely altered. Thus,
when applying these models, certain customizations should be care-
fully conducted. Furthermore, visualization-tailored deep learning
models are also desired. For example, compared with shape fea-
tures, the bias of CNN models towards texture features has been
observed [13]. However, in visualizations, we focus more on the
shapes of visual elements instead of the texture. Thus, a tailored
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CNN model which emphasizes shape features might be more suit-
able for visualization-related tasks and can replace the ResNet-50
in our approach.

7.2 Generalizability and Application Scenarios
This section discusses the generalizability of our approach and some
potential application scenarios of our method. The generalizability
is from two perspectives: generalizability to visualizations created
using other packages (e.g., D3) and generalizability to multi-view
visualizations (e.g., dashboards or visual analytic systems).

Visualizations Created by Other Packages. In our evaluation,
we used a visualization corpus crawled from Plotly. However, it is
not restricted to visualizations created using Plotly and can be ex-
tended to visualizations created using other visualization packages.
The requirements of leveraging our approach to retrieve visualiza-
tions include a unified structure of visualizations and the consistent
usage of SVG elements in the visualizations. Here a unified struc-
ture of visualizations requires a consistent way of grouping visual
elements. Our approach does not require a specific criterion of
grouping visual elements as long as a unified way of grouping vi-
sual elements is applied, for example, grouping <path>s by data
columns in Plotly. The consistent usage of SVG elements requires
that the same type of SVG elements is employed to render the same
type of visualizations. For example, all the bars in bar charts are
plotted with <path>s.

Visualizations created using specification-based packages such
as Vega-Lite [38] and Plotly usually fulfill the requirements of our
approach. However, when dealing with the visualizations created
with tools with more flexibility, such as Adobe Illustrator8 and
D3 [2], our approach may meet difficulties due to the inconsistent
usage of SVG elements. For example, when creating visualizations
with D3, bars can be created using <path>, <rect> or <polygon> in
different visualizations. A potential future direction is to improve
the generalizability of our structure-aware approach to handle
visualizations created with various tools.

Visualizations with Multiple Views. Multi-view visualiza-
tions have been widely used to accommodate data with a huge
number of attributes [6]. Along with its popularity, characterizing
multi-view visualizations also attracts researchers’ interest [6, 56].
Our approach also has the potential to capture the structural infor-
mation of multi-view visualizations by considering more factors,
such as the hierarchical and spatial relationship among views.

Application Scenarios.With the popularity of data visualiza-
tions, an emerging research direction is to treat them as a data
format and to propose visualization-specific methods for storing,
querying and analyzing enormous visualizations [55]. Our approach
has the potential to enable various downstream applications to-
wards this direction. First, our approach can provide a new way to
perform the nearest neighbor query on stored visualizations based
on their structural information. This can also boost the re-use of
visualization codes since structural information is highly related to
the implementation of a visualization. Second, a more effective vi-
sualization retrieval approach can enhance the large-scale analysis
of visualizations. It allows users to group similar visualizations and

8https://www.adobe.com/products/illustrator.html

conduct further analysis such as understanding general users’ pref-
erences on visual designs. Third, it can facilitate the construction of
large-scale visualization corpora. Most of the existing visualization
corpora only provide high-level labels of visualizations such as the
visualization type [19] and color usage [59]. With our approach,
fine-grained labels (e.g., the trend of data) of visualizations can be
easily labeled based on similar visualization retrieval.

7.3 Limitations
The evaluations above have demonstrated the effectiveness of our
approach, but it is not without limitations.

Evaluation. To extensively evaluate our approach, we have
conducted a user study, quantitative comparisons and case studies.
However, there are also limitations in our evaluation. Among the
three most important criteria in evaluating the perceptual similarity
of visualizations, We have designed two quantitative metrics to
measure the performance of various visualization retrieval methods
from the perspective of visualization type consistency and the
difference of numbers of visual elements. However, we did not apply
a quantitative metric to evaluate the consistency between trends of
data in visualizations. The major reason is that the trends of data in
visualizations are complex and difficult to be accurately quantified
in a universal way. For example, in box plots, the trend of data can
refer to either the distribution of data in each box or the difference
of data between multiple boxes. Existing studies also failed to define
a universal metric to quantitatively evaluate the trend of data of
different types of visualizations (e.g., [23, 51, 53]). To mitigate the
issue that the similarity between data trends in visualizations cannot
be quantitatively evaluated, we further conducted the user study to
verify our effectiveness by asking participants to explicitly consider
trends of data when scoring the similarity between visualizations.
Furthermore, as shown in our user study, though our methods
outperform other approaches in terms of the 5-point likert scale,
the score (i.e., 2.8607) is still not perfect. Also, the confusion between
line charts and scatter plots can be further reduced. We suspect the
reason is that some line charts are with circles on the data points
(see Figure 9), which may affect the measurement of similarity. In
the future, more research is expected to improve our structure-
aware approach for visualization retrieval, for example, developing
visualization-tailored models as mentioned in Section 7.1.

Feature Fusion. In our structure-aware approach for visualiza-
tion retrieval, we represent the structural and visual information as
two embedding vectors. According to our preliminary comparison
with other approaches, we simply concatenate them as the final
embedding vector of the visualization (see Section 5.3). However,
this step is not without limitations. First, the concatenated embed-
ding vector of a visualization will take additional space to store,
which can lead to inefficiency. Second, the performance of simple
concatenation may be limited due to some redundant information
inside two embedding vectors, for example, colors. The redundant
information can result in bias when calculating the similarity. To
address the potential drawbacks, it is possible to fuse the visual and
structural information based on additional information such as the
interaction records used in Screen2Vec [26]. However, due to the
lack of such visualization corpus, we have left it as our future work.

https://www.adobe.com/products/illustrator.html
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8 CONCLUSION
Scalable Vector Graphic (SVG)-based visualizations have beenwidely
used and shared online. Along with their popularity, retrieving sim-
ilar SVG-based visualizations has become a critical task. In this pa-
per, we propose a structure-aware visualization retrieval approach
based on the most common perceptual visualization similarity cri-
teria surveyed in our pilot study. Despite the widely used visual
information in prior studies, our approach further considers the
often ignored but essential structural information to advance the
performance. To consider both types of information, we convert
SVGs to bitmaps for visual information extraction and graphs for
structural information extraction. Then contrastive representation
learning technique is employed to generate the low-dimensional
embedding vectors of visual and structural information, respec-
tively. The corresponding visualization is then represented by the
concatenation of embedding vectors for visualization retrieval. We
conducted extensive evaluations, including quantitative compar-
isons with prior approaches, a user study and multiple case studies,
to demonstrate the effectiveness of our approach.

In future work, we would like to extend our structure-aware
visualization retrieval approach to more visualization types, e.g.,
multi-view visualizations. Another interesting direction is to ex-
plore the possibility of directly extracting structural information
from bitmap-based visualizations and investigate how our approach
can work for the retrieval of bitmap-based visualizations.
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A EFFICIENCY
To evaluate the efficiency of our structure-aware approach, we con-
ducted preliminary experiments on a server with two Intel Xeon
Silver 4210R processors, two Nvidia Quadro RTX 6000 GPU Cards
and 128G memory. First, we tested the speed of generating the em-
bedding. The average time is 1.4052 ms for each visualization (CNN
for visual information: 1.2027 ms, GNN for structural information:
0.2025 ms). Then we ran experiments to identify the relationship be-
tween the retrieval time and the size of the corpus after generating
embedding vectors. The results are shown in Table 3. We can notice
that the retrieval time is almost growing linearly with respect to the
size of the corpus (with Pearson correlation coefficient = 0.9998) and
is not correlated with the number of returned visualizations. When
there are 50000 visualizations with stored embedding vectors in the
corpus, the time cost of returning the top-5 similar visualizations of
a new visualization is about 6.1082 ms, which is satisfactory. In the
future, more experiments can be conducted with a larger corpus
to further evaluate the efficiency of our structure-aware approach.
Also, how to reduce the time of generating embedding vectors and
retrieving similar visualizations should be explored.

Table 3: This table shows the average time (in ms) of retriev-
ing the top similar visualizations from a corpus with our
structure-aware approach. The values are the average values
of five runs. The horizontal axis represents the numbers of
visualizations in a corpus and the vertical axis represents the
top-k query.

1000 5000 10000 50000

Top-1 0.0642 0.4084 0.8252 4.7140
Top-5 0.0653 0.4108 0.8251 4.7030
Top-10 0.0657 0.4067 0.8326 4.7123
Top-20 0.0656 0.4011 0.8282 4.7124

B FEATURES
In this section, we list and discuss the features used in our structure-
aware approach.

List of features. Table 4 shows the features in four groups and
the corresponding SVG element types. The SVG element types in-
clude open <path>, closed <path>, <text> and <g>/<svg>. A closed
<path> contains at least a path that starts and ends at the same point.
On the other hand, an open <path> does not have a path that starts
and ends at the same point. As introduced in Section 5.1, the moti-
vation of distinguishing different types of paths is to design various
features to delineate the shapes of visual elements in visualizations
accurately. Specifically, closed <path>s likely appear in box plots,
bar charts and scatter plots while open <path>s are likely in line
charts. Thus, considering the characteristics of these visualization
types, we introduce the trend features for open <path>s since the
width and length of the bounding box are not sufficient to reflect
the shape of lines. On the other hand, since closed <path>s have
the same starting and ending point, it is not suitable to describe
them using trend.

Importance of features.We discuss the importance of features
in our approach. The groups of features in Table 4 are designed to
match the criteria of visualization similarity collected in our pre-
liminary study. Thus, the most important group of features among
all should be the group of position features and the least important
group of features should be style features. Furthermore, accord-
ing to the empirical observation during the development of our
structure-aware approach, we summarize two findings. First, if
we only keep Type features, the performance will be worse than
keeping all features. Thus, the other features are helpful when delin-
eating the similarity of visualizations. Second, the feature of trend
can improve the estimation of the similarity of line charts, which
matches our motivation of applying LOESS regression to gener-
ate the trend features. In the future, it will be helpful to conduct
quantitative ablation studies for an in-depth understanding of the
importance of features.

Limitation of features. The limitations of the features in our
paper are reflected. The first limitation of current features is the lack
of consideration for complex visual elements. Due to our scope of
the standard statistical charts (i.e., box plot, bar chart, line chart and
scatter plot), we only consider the potential SVG elements in these
charts and propose the corresponding features. However, in practice,
there can be SVG elements that represent complex visual elements,
for example, curved <path>s and <ellipse>. Another limitation is
that the features are limited to the SVG elements used in Plotly.
Different packages may use different SVG elements to draw the
same type of charts, for example, Vega-Lite and Plotly use <path>s
to draw bar charts while D3 uses <rect>s. A potential method to
handle this issue is to convert such elements, for example, <rect>s
and <polygon>s, to <path>s when constructing the graph of visual
elements. In future work, it is worth more exploration to improve
the generalizability of features to fit complex visual elements and
different representations of the same visual element.

C ROBUSTNESS
As introduced in Section 6, the results of our quantitative evaluation
and the user study show that our approach outperforms other meth-
ods consistently. However, our evaluation lacks a comprehensive
evaluation on the robustness of our structure-aware visualization
retrieval approach towards minor changes of visualizations. The
major challenge that hinders us from the evaluation of robustness
is the lack of a universal definition of the robustness of visual-
ization retrieval. We also investigated several widely-recognized
studies [14, 20, 41] and a survey [28] on image retrieval to under-
stand how robustness is examined for image retrieval methods.
Among all the evaluations towards robustness in these papers, only
the evaluation on the effect of image size changes is suitable for
visualizations. Other evaluations can hardly be applied to visualiza-
tion retrieval (e.g., the effect of occlusion, input noise and viewpoint
changes). In our study, we have scaled the size and position features
of visual elements according to the size of the entire SVG instead of
using pixel numbers directly. The usage of relative scales makes the
proposed method more robust to different sizes of visualizations.
In future work, more studies should be conducted to deepen the
understanding of the robustness of visualization retrieval methods.
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Table 4: This table summarizes the features which characterize the SVG elements. The colored blocks represent that the feature
is valid for the element type. A closed <path> contains one or more paths that start and end at the same point. An open <path>
has to start and end at different points and does not contain any closed <path>.

Category Feature Closed
<path>

Open
<path>

<text> <g>/
<svg>

Details

Type Element type The type of the element

Style

Stroke color The stroke color of the element in RGB
Stroke width The stroke width of the element
Stroke opacity The stroke opacity of the element

Fill color The fill color of the element in RGB
Fill opacity The fill opacity of the element

Shape

Area The area of the element
Width The width of the element’s bounding box
Length The length of the element’s bounding box

Vertex Number The number of the element’s vertices
Trend The trend of an open <path>

Length The number of characters

Position
Center The center position of the element’s bounding box
Delta The difference in center positions of two neighbor elements
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