
Structure-aware Visualization Retrieval
Haotian Li

The Hong Kong University of Science
and Technology

Hong Kong SAR, China
Singapore Management University

Singapore
haotian.li@connect.ust.hk

Yong Wang
Singapore Management University

Singapore
yongwang@smu.edu.sg

Aoyu Wu
The Hong Kong University of Science

and Technology
Hong Kong SAR, China
awuac@connect.ust.hk

Huan Wei
The Hong Kong University of Science

and Technology
Hong Kong SAR, China
hweiad@connect.ust.hk

Huamin Qu
The Hong Kong University of Science

and Technology
Hong Kong SAR, China
huamin@cse.ust.hk

ABSTRACT
With the wide usage of data visualizations, a huge number of Scal-
able Vector Graphic (SVG)-based visualizations have been created
and shared online. Accordingly, there has been an increasing inter-
est in exploring how to retrieve perceptually similar visualizations
from a large corpus, since it can benefit various downstream appli-
cations such as visualization recommendation. Existing methods
mainly focus on the visual appearance of visualizations by regard-
ing them as bitmap images. However, the structural information
intrinsically existing in SVG-based visualizations is ignored. Such
structural information can delineate the spatial and hierarchical
relationship among visual elements, and characterize visualizations
thoroughly from a new perspective. This paper presents a structure-
aware method to advance the performance of visualization retrieval
by collectively considering both the visual and structural informa-
tion. We extensively evaluated our approach through quantitative
comparisons, a user study and case studies. The results demonstrate
the effectiveness of our approach and its advantages over existing
methods.
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•Human-centered computing→Visualization; • Information
systems→ Information retrieval; • Computing methodologies
→ Machine learning.
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1 INTRODUCTION
Data visualization provides users with a powerful approach to an-
alyze enormous data, communicate insights and achieve efficient
decision-making. Along with the popularity of visualizations, a
huge number of visualizations based on Scalable Vector Graph-
ics (SVGs) have been created and shared online. Compared with
bitmap-based visualizations, SVG-based visualizations have many
advantages such as the support of interactions [1] and quality-
preserving resizing. Thus, SVGs have been adopted by various
online platforms to store and present visualizations, for example,
Plotly1 and Observable2. With such a large volume of visualizations
online, how to retrieve similar visualizations has attracted growing
research interest from both academia and industry [31, 32, 36] due
to its significant importance for many downstream tasks. Specifi-
cally, the retrieval of similar visualizations is fundamental to down-
stream tasks such as creating visualization collections [32] and
recommending visualizations [31].

To achieve effective retrieval of similar visualizations, the core
problem is to characterize the similarity between two visualizations.
Existing studies mainly focus on estimating the similarity between
visualizations according to the data or perceptual similarity. The
existing methods based on data similarity [31, 42, 43, 48] focus on
the characteristics of data such as data distribution or metadata,
ignoring the visual appearance of visualizations. Since the original
data is not always available with the visualizations, the applica-
tion of visualization retrieval methods based on data similarity is
quite limited. Perceptual similarity mainly refers to the similar-
ity of visualizations perceived by users, which can also reflect the
data similarity. Compared to the direct computation of data sim-
ilarity, the computation of perceptual similarity does not rely on
the original data. To compute the perceptual similarity, existing
approaches [29, 36, 61] first extract the visual feature vectors from

1https://plotly.com/
2https://observablehq.com/
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visualizations and further calculate the distance between feature
vectors to measure their similarity. These methods mainly extract
the visual features of visualizations at the level of pixels. For exam-
ple, Saleh et al. [36] measured the visualization similarity by using
the color distribution of di�erent pixels (i.e., color histograms). Re-
cently, deep learning-based methods [29, 61] have been proposed
to extract visual features automatically by treating visualizations
as bitmap images (e.g., the images in ImageNet [10]). However, few
prior studies have considered thestructural information of visu-
alizationsthat exists in SVGs by nature, when characterizing the
perceptual similarity of visualizations.

Structural information of visualizationsmainly describes the spa-
tial and hierarchical relationship between elements, such as the
position, grouping and hierarchy of the basic visual elements (e.g.,
<rect>and<path>). Compared with the commonly-usedvisual in-
formation(i.e., the visual features to describe the appearance of
visualizations) of visualizations, structural information enables a
unique perspective to characterize the appearance of visualizations
at the level of visual elements instead of pixels. It provides an ac-
curate description of how di�erent visual elements are organized
in visualizations. For example, as shown in Figure 1, a grouped bar
chart with two groups of bars (Figure 1(a)) and a bar chart with only
one group of bars (Figure 1(b)) seem to show the same trend and are
regarded as similar charts, if only the visual information is consid-
ered by using a computer-vision-based method (e.g., convolutional
neural network (CNN) models). However, the grouped bar chart
actually shows how two sets of data are compared and it should
not be treated as a similar visualization as the bar chart with a sin-
gle group of bars. Instead, another grouped bar chart (Figure 1(c))
with both similar structureand appearance should be regarded sim-
ilar to the query bar chart (Figure 1(a)). From the example above,
it is obvious that structural information plays an important role
in characterizing the perceptual similarity between visualizations.
However, it still remains unclear what kind of structure-based fea-
tures can be extracted and how these structure-based features can
be leveraged to facilitate similar visualization retrieval.

In this paper, we aim to �ll the research gap by leveraging both
structural and visual information to accurately evaluate thepercep-
tual similarity between visualizations. We �rst conducted a prelim-
inary study to better understand users' criteria on assessing the
perceptual similarity of visualizations and identi�ed the three most
important criteria, i.e.,the type of a visualization, the number of vi-
sual elementsandthe overall trend of visualized data. Building upon
these results, we propose to transform SVG-based visualizations
to graphsandbitmap imagesthat re�ect the structure and the ap-
pearance of visualizations, respectively. Then we utilize contrastive
representation learning to comprehensively delineate structural
and visual information in a visualization with embedding vectors.
Contrastive representation learning is a type of self-supervised
learning method and can minimize the distance between similar
samples and maximize the distances between diverse samples [21].
With contrastive learning, we avoid manually labeling the similar-
ity between di�erent visualizations, enabling us to easily generalize
our approach to various visualizations. Finally, we gain an embed-
ding vector for each visualization that characterizes its structural
and visual information and is used for retrieving similar visual-
izations. Using the VizML corpus [19], we extensively evaluate

our approach through a crowdsourced user study, multiple case
studies and quantitative comparisons. The results demonstrate the
e�ectiveness of our approach.

The major contributions of this paper are summarized as follows:

� We present a novel structure-aware approach to characterize
the perceptual similarity between visualizations through em-
bedding vectors, which enables e�ective similar visualization
retrieval.

� We conduct extensive evaluations including a crowdsourced
user study with 50 participants, multiple case studies and
quantitative comparisons with existing visualization retrieval
methods. The results verify the e�ectiveness of our structure-
aware visualization retrieval approach.

� We summarize the lessons we learned during exploring the
usage of structural information in visualization retrieval.

2 RELATED WORK
The related work of this study can be categorized into three parts:
retrieval of visualizations, visualization similarity estimation and
visualization storage formats.

2.1 Visualization Retrieval
Visualization retrieval has attracted researchers' interests in recent
years along with the increasing number of visualizations. According
to the type of queries, there are two major classes of methods for
retrieving visualizations [45], retrieval by de�nition and retrieval
by example.

Retrieval by de�nition means that users can explicitly specify the
criteria of retrieving visualizations using either programming lan-
guage or natural language. For example, Hoque and Agrawala [18]
enable users to create a JSON-like speci�cation to indicate their tar-
get characteristics of visualizations such as encoding types. Some
other prior studies [7, 27, 44, 45] also provide users with tools to
search for visualization using explicit queries. Compared to retrieval
by de�nition, retrieval by example provides an intuitive way for
users to de�ne the criteria of retrieving visualizations. Users can use
existing visualizations or sketches to search for other visualizations.
Several recent studies [29, 34, 36] take example visualizations as
inputs and return similar ones for data exploration or visualization
re-use. Zenvisage [42] and ShapeSearch [43] allow users to sketch
their desired data pattern in visualizations. Then they retrieve the
data which matches the pattern from the database and visualize
them to users. In this line of research, one of the core problems is
how to de�ne the similarity between visualizations, which will be
further discussed in Section 2.2.

Our structure-aware approach falls in the category of retrieval
by example. Our approach takes SVG-based visualizations as the
input and then represents the visual and structural information of
them as embedding vectors for similar visualization retrieval.

2.2 Visualization Similarity
Computing the similarity of visualizations bene�ts various down-
stream tasks such as assisting in exploratory data analysis [62],
querying visualizations [29] and generating visualization collec-
tions [32]. Inspired by a previous study [29], prior methods on
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(a) Query (b) Visual Information (CNN) (c) Structural and Visual Information

Figure 1: This �gure shows (a) a sample query and the top-1 visualizations retrieved by (b) only considering visual information
using CNN and (c) considering both structural and visual information. This example shows that structural information is
essential in performing similar visualization retrieval.

computing the similarity of visualizations can be roughly catego-
rized into two classes: data similarity and perceptual similarity.

The �rst class of methods focuses on the visualized data solely
to delineate the similarity between visualizations. Some representa-
tive studies in this class include SeeDB [42], ShapeSearch [43] and
VizCommender [31]. SeeDB [42] and ShapeSearch [43] de�ne the
similarity between visualizations as the similarity of data distribu-
tion or trend. These methods require that the raw data is available,
which limits their application scenarios. A possible way to mitigate
the issue is to extract the raw data from visualizations and then
calculate the data similarity. However, since the performance of
existing data extraction methods (e.g., [39]) is not satisfactory [22],
the inaccurately extracted data may further a�ect the results of
retrieval.

Another class of methods focuses on the perceptual similarity of
visualizations. They extract visual features from visualizations and
further utilize the distance between hand-crafted or learned feature
vectors to characterize the similarity of visualizations. Hand-crafted
features mainly refer to those features which are selected by the
authors and can re�ect certain characteristics of visualizations. For
example, prior studies proposed to use color histograms [36] or
histograms of gradients [32] to measure the perceptual similarity
of infographics or visualization workbooks. Due to the ine�ciency
and complexity of selecting hand-crafted features, representations
automatically learned by machine learning models have been ap-
plied recently. For example, ChartSeer [62] proposed to use an
autoencoder to extract the representations of visualizations from
their speci�cations. ScatterNet [29] and ChartNavigator [61] intro-
duced convolutional neural networks (CNNs) on visualizations to
learn their representations.

This paper aims to propose a structure-aware approach for re-
trieving perceptually similar visualizations. Compared with the re-
trieval methods based on data similarity (e.g., [42,48]), our approach
does not require the existence of original data and thus extends
the scope of inputs. Di�erent from the existing approaches which
compute the perceptual similarity3 of visualizations (e.g., [29, 31]),
our approach considers both the pixel-level visual appearance and
the structure of visual elements. Such a design allows our approach
to better match the crowdsourced criteria of perceptual similarity,
which will be introduced in Section 7.1.

3In the remaining part of this paper, �similarity� refers to perceptual similarity.

2.3 Visualization Format
Depending on the ultimate purposes of di�erent visualizations, they
can be stored in various formats including graphics, programs and
hybrid approaches [55].

The graphics-based visualizations include two common formats:
raster graphics and vector graphics. Raster graphics (i.e., bitmaps)
are the most common approaches to store and share visualiza-
tions [37] due to their high compatibility. However, they are hardly
editable and can lose visualization-speci�c information such as
the chart type and visual encodings [55]. As an alternative, vector
graphics like SVGs provide general users with the �exibility of
modi�cation and annotation and can preserve partial visualization-
related information [54, 55] such as the relationship between visual
elements. Previously, some studies have explored utilizing vector
graphics to achieve visualization query by speci�cation [18] and
visualization type classi�cation [1].

Programs are also a common way to store visualizations such
as D3 [2], Vega-Lite [38] or Plotly. They preserve the visualization-
related information and raw data. However, when rendering them
as visualizations, extra compilers are always required, which limits
their compatibility and wide usage. Recently, to combine the ad-
vantages of graphics and programs, several recent studies have also
explored how to embed programs into graphics, such as [12, 35, 60].

Bitmaps and programs are commonly used in previous studies
to compute the similarity of visualizations [29, 50, 62]. However,
bitmaps su�er from the lack of visualization-speci�c information
while the usage of programs limits the generalizability of related
methods. Thus, in our paper, we propose to utilize the structural in-
formation (see Section 3.1) stored in scalable vector graphics (SVGs),
which is widely used in spreading visualizations on the Internet
due to its interactivity [1]. We combine the structural information
extracted from SVGs and the visual information extracted from
bitmaps to achieve e�ective characterization of visualization simi-
larity.

3 BACKGROUND
In this section, we introduce the background of our research, in-
cluding the structural information in SVGs (Section 3.1) and the
overview of contrastive learning, which enables unsupervised rep-
resentation learning for both SVGs and bitmaps (Section 3.2).
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3.1 Structural Information in SVGs
Scalable vector graphics (SVGs) are �les used to describe vector-
based graphics using Extensible Markup Language (XML)4. They
have been widely used in visualizations on the Internet [1]. Com-
pared with bitmaps, SVGs can preserve more visualization-speci�c
information such as the style of the visual elements [55]. The struc-
tural information in SVGs mainly includes the hierarchical and
spatial relationship among elements and the properties of each
element. The hierarchical information of visual elements can re-
�ect how they are inherited and grouped, for example, in Figure 5,
the <path>s of green bars are grouped under the same<g>while
the <path>s of blue bars are grouped under another<g>. Such in-
formation of visual elements can further illustrate the usage of
visual channels and reveal some information of the raw data like
the number of data instances and the number of attributes. The
spatial relationship, which is extracted based on the positions of
visual elements, can describe how the elements are placed and a
rough trend of data. The properties of each element in SVGs also
encode rich information, for example, the type, style, and shape of
the element. The types of elements re�ect the functionality of ele-
ments, for example,<g>is used to group other elements and<text>
can be rendered as graphics containing text. The styles of an ele-
ment indicate how the elements are rendered. Some common styles
include the color and stroke of an element. Furthermore, the shape
of some visual elements can also be obtained from the properties,
for example, the attribute�d� in <path>de�nes the shape of a path.
Besides, SVGs also have some properties related to interactions (e.g.,
onclickandonmouseover).

In this paper, we propose to utilize the structural information
extracted from SVGs to enhance the retrieval of similar static visu-
alizations. To be more speci�c, we mainly consider structural infor-
mation to re�ect the hierarchical and spatial relationship among
elements. Some side information such as the types and styles of
elements is also utilized to distinguish di�erent elements. More
details are further illustrated in Section 5.1.

3.2 Contrastive Learning
Supervised deep learning approaches always require a large number
of samples with labels to train a model with satisfactory perfor-
mance [21]. However, corpora with high-quality labels are always
hard to be obtained due to the high cost of human annotation.
Thus, to reduce the e�ort of manually labeling, self-supervised
representation learning approaches, which are sometimes consid-
ered as a subset of unsupervised learning methods, have attracted
researchers in various �elds, for example, computer vision [4, 5],
user interface (UI) design [26] and visualization [47]. Contrastive
learning is a representative approach of self-supervised learning.
The basic idea behind it is to train a model which can discriminate
similar and dissimilar samples [21]. As illustrated in Figure 2, a com-
mon pipeline in contrastive learning approaches contains 4 steps:
data augmentation, representation extraction, representation projec-
tion and contrastive loss computation[4]. In the �rst step, a data
sample will be randomly transformed (e.g., distortion for images)
and the transformed samples will be considered as similar (positive)
samples. Then the transformed samples are encoded to embedding

4https://developer.mozilla.org/en-US/docs/Web/SVG

vectors by an encoder in the second stage. The embedding vectors
are further projected to a space where the loss is computed. After
training using the pipeline above, the encoder is used solely to
extract representations of data samples and di�erent projectors can
be trained for various downstream tasks such as classi�cation.

Figure 2: The basic structure of contrastive learning contains
four major modules [ 4]: data augmentation, representation
extraction, representation projection and loss computation.
This �gure shows SimSiam [5] as an example.

In our paper, we propose to use two CNN- and GNN-based con-
trastive learning models [5, 46] to generate the embedding vectors
of visualizations' visual and structural information, respectively.
Then the embedding vectors are concatenated and used for visual-
ization retrieval.

3.3 Graph Neural Networks
Inspired by successful convolutional neural networks (CNNs), graph
neural networks (GNNs) have been proposed to model the relation-
ship among nodes in graphs. The basic idea behind GNNs is to
propagate the features of nodes through edges and then aggre-
gate the information on nodes to capture node features and graph
structures [63]. The feature propagation and aggregation can be
considered as a generalized convolutional �lter on graphs. GNNs
have shown outstanding performance on graph-related tasks (e.g.,
node classi�cation [40] and graph classi�cation [58]) in various
application domains (e.g., UI design [33], online education [25] and
visualization [52]). As introduced in Section 3.1, SVG elements are
organized as trees that can also be regarded as graphs. Thus, it is
intuitive to apply GNNs to learn and represent the structural infor-
mation in SVGs as embedding vectors. Considering the advantages
of contrastive learning (see Section 3.2), GNN-based contrastive
learning approaches are suitable for extracting the embedding vec-
tors of graphs of SVG elements in our structure-aware approach.
Existing GNN-based contrastive learning approaches are mainly
applied to three types of tasks [57], including node-level tasks
such as node classi�cation (e.g., DGI [49]), edge-level tasks such as
link prediction (e.g., BiGi [3]) and graph-level tasks such as graph
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classi�cation (e.g., InfoGraph [46]). Since we aim to represent the
structural information in the graph of SVG elements with embed-
ding vectors, InfoGraph [46], one of the state-of-the-art methods
for graph embedding, is applied in our approach. Section 5.1 will
introduce more details of InfoGraph.

4 PRELIMINARY STUDY
Before designing our structure-aware visualization retrieval ap-
proach, we conducted a preliminary study in which we collected
the opinion of 54 visualization users on the criteria of perceptual
similarity between visualizations. In this section, we introduce the
procedure5 of the study and summarize the important criteria.

4.1 Procedure
Our preliminary study was conducted on Proli�c6, a widely used
platform for recruiting research participants. There are totally three
parts in the study. In the �rst part, we �rst introduced the overall
process and got the participants' consent to join the study. Then,
to verify that the participant has basic knowledge of visualizations,
each participant was required to answer three simple visualization-
related questions, for example,�what is the chart type of the given
visualization?�. Only participants who correctly answered the three
veri�cation questions were allowed to join the study. No other cri-
teria were used in the participant recruitment. In the second part of
the study, to encourage the participants to re�ect on how they judge
the similarity of visualizations, each participant was presented with
�ve query visualizations and their retrieved top-5 similar visualiza-
tions by using visual information only. The participants were asked
to give each retrieved visualization a score ranging from 1 (the least
similar) to 5 (the most similar). After �nishing the scoring, in the
last part of the study, we asked participants to write down their
criteria of scoring the retrieved visualizations in a text box.

After the study, we summarized the responses from participants.
Since there may be ambiguity in understanding the criteria men-
tioned by participants, we �rst classi�ed the major criteria into
six major categories and two co-authors of this paper labeled all
responses individually. If the annotations were inconsistent on
any response, we examined and discussed together to reach an
agreement on these cases.

4.2 Results
The six major criteria and their frequency are shown in decreasing
order in Figure 3. In the results, we can notice that there are three
important criteria (i.e., visualization type, the trend of data and
the number of visual elements) with much higher frequency than
other criteria. The results of our preliminary study also align with a
previous study [23] well. Speci�cally, the number of visual elements
and the trend of data are also considered when measuring the
di�erence between two visualizations in the previous research [23].
Thus, the type of visualization, the trend of data and the number
of visual elements are necessary to be considered explicitly in our
approach when characterizing similarity of visualizations.

5The protocol of the preliminary study and the user study has been approved by the
Institutional Review Board of our institution.
6https://www.proli�c.co/

Figure 3: We categorized di�erent criteria mentioned by par-
ticipants into six classes and identi�ed the three most im-
portant criteria based on their frequency. Other styles refer
to the styles of visual elements other than colors, for exam-
ple, the space between bars and the width of bars. Metadata
refers to the meta-information of data in the visualizations,
for example, the range and the type of data.

5 METHOD
In this section, the method of our structure-aware visualization
retrieval is introduced. An overview is shown in Figure 4. To ex-
tract and represent the structural information in a visualization, we
�rst construct a graph of visual elements with features and then
apply a GNN encoder to generate the embedding vector of it (Sec-
tion 5.1). Then we also render the visualization to a bitmap and use
a CNN model to encode the visual information as an embedding
vector as well (Section 5.2). Here we applied contrastive represen-
tation learning to train both CNN and GNN encoders since it can
eliminate human e�orts on data annotation. Finally, we normalize
and concatenate the embedding vectors of structural and visual
information for similar visualization retrieval (Section 5.3).

Figure 4: Our approach extracts both structural and visual
information from visualizations �rst. Then the two types of
information are encoded to embedding vectors separately.
Finally, two embedding vectors are normalized and concate-
nated as the �nal representation of the visualization.
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